7 resultados para Ant-based algorithm

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work seeks to propose and evaluate a change to the Ant Colony Optimization based on the results of experiments performed on the problem of Selective Ride Robot (PRS, a new problem, also proposed in this paper. Four metaheuristics are implemented, GRASP, VNS and two versions of Ant Colony Optimization, and their results are analyzed by running the algorithms over 32 instances created during this work. The metaheuristics also have their results compared to an exact approach. The results show that the algorithm implemented using the GRASP metaheuristic show good results. The version of the multicolony ant colony algorithm, proposed and evaluated in this work, shows the best results

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nonogram is a logical puzzle whose associated decision problem is NP-complete. It has applications in pattern recognition problems and data compression, among others. The puzzle consists in determining an assignment of colors to pixels distributed in a N  M matrix that satisfies line and column constraints. A Nonogram is encoded by a vector whose elements specify the number of pixels in each row and column of a figure without specifying their coordinates. This work presents exact and heuristic approaches to solve Nonograms. The depth first search was one of the chosen exact approaches because it is a typical example of brute search algorithm that is easy to implement. Another implemented exact approach was based on the Las Vegas algorithm, so that we intend to investigate whether the randomness introduce by the Las Vegas-based algorithm would be an advantage over the depth first search. The Nonogram is also transformed into a Constraint Satisfaction Problem. Three heuristics approaches are proposed: a Tabu Search and two memetic algorithms. A new function to calculate the objective function is proposed. The approaches are applied on 234 instances, the size of the instances ranging from 5 x 5 to 100 x 100 size, and including logical and random Nonograms

Relevância:

30.00% 30.00%

Publicador:

Resumo:

LEÃO, Adriano de Castro; DÓRIA NETO, Adrião Duarte; SOUSA, Maria Bernardete Cordeiro de. New developmental stages for common marmosets (Callithrix jacchus) using mass and age variables obtained by K-means algorithm and self-organizing maps (SOM). Computers in Biology and Medicine, v. 39, p. 853-859, 2009

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SANTANA, André M.; SOUZA, Anderson A. S.; BRITTO, Ricardo S.; ALSINA, Pablo J.; MEDEIROS, Adelardo A. D. Localization of a mobile robot based on odometry and natural landmarks using extended Kalman Filter. In: INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, 5., 2008, Funchal, Portugal. Proceedings... Funchal, Portugal: ICINCO, 2008.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of wireless communication systems leads to Dynamic Spectrum Allocation for Cognitive Radio, which requires reliable spectrum sensing techniques. Among the spectrum sensing methods proposed in the literature, those that exploit cyclostationary characteristics of radio signals are particularly suitable for communication environments with low signal-to-noise ratios, or with non-stationary noise. However, such methods have high computational complexity that directly raises the power consumption of devices which often have very stringent low-power requirements. We propose a strategy for cyclostationary spectrum sensing with reduced energy consumption. This strategy is based on the principle that p processors working at slower frequencies consume less power than a single processor for the same execution time. We devise a strict relation between the energy savings and common parallel system metrics. The results of simulations show that our strategy promises very significant savings in actual devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Car Rental Salesman Problem (CaRS) is a variant of the classical Traveling Salesman Problem which was not described in the literature where a tour of visits can be decomposed into contiguous paths that may be performed in different rental cars. The aim is to determine the Hamiltonian cycle that results in a final minimum cost, considering the cost of the route added to the cost of an expected penalty paid for each exchange of vehicles on the route. This penalty is due to the return of the car dropped to the base. This paper introduces the general problem and illustrates some examples, also featuring some of its associated variants. An overview of the complexity of this combinatorial problem is also outlined, to justify their classification in the NPhard class. A database of instances for the problem is presented, describing the methodology of its constitution. The presented problem is also the subject of a study based on experimental algorithmic implementation of six metaheuristic solutions, representing adaptations of the best of state-of-the-art heuristic programming. New neighborhoods, construction procedures, search operators, evolutionary agents, cooperation by multi-pheromone are created for this problem. Furtermore, computational experiments and comparative performance tests are conducted on a sample of 60 instances of the created database, aiming to offer a algorithm with an efficient solution for this problem. These results will illustrate the best performance reached by the transgenetic algorithm in all instances of the dataset

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional applications of feature selection in areas such as data mining, machine learning and pattern recognition aim to improve the accuracy and to reduce the computational cost of the model. It is done through the removal of redundant, irrelevant or noisy data, finding a representative subset of data that reduces its dimensionality without loss of performance. With the development of research in ensemble of classifiers and the verification that this type of model has better performance than the individual models, if the base classifiers are diverse, comes a new field of application to the research of feature selection. In this new field, it is desired to find diverse subsets of features for the construction of base classifiers for the ensemble systems. This work proposes an approach that maximizes the diversity of the ensembles by selecting subsets of features using a model independent of the learning algorithm and with low computational cost. This is done using bio-inspired metaheuristics with evaluation filter-based criteria