2 resultados para Animals -- Protecció -- Aspectes ètics i morals
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Social behavior of Guiana dolphins, Sotalia guianensis, at Pipa Beach, RN, Brazil: dynamics, sequence, breathing synchrony, and responses to dolphin watching. Social animals form groups that can range from temporary to permanent. Depending on the nature of the social relationships developed between individuals, groups present a particular social organization and the effect of these interactions shapes the activity patterns of these animals. This study investigates: (i) fission-fusion dynamics of Guiana dolphins, through the analysis of three dimensions of the social system (variation in spatial cohesion, variation in size and composition of groups), (ii) sequence, routine and behavioral stability, (iii) breathing intervals in synchronized groups and (iv) behavioral responses of the animals to dolphin watching. Systematic observations of Guiana dolphins were made from a platform located in cliffs about 25 m above sea level that surround Madeiro Bay, Pipa Beach. Sampling occurred from December 2007 to February 2009 between 0600 h and 1600 h, and the groups of Guiana dolphins were investigated according to their size (alone and group) and composition (adults, adults and juveniles, and adults and calves). According to the analysis of fission-fusion dynamics, Guiana dolphin groups frequently changed their composition, modifying their patterns of spatial grouping and cohesion every 20 minutes on average. More than 50% of the individuals maintained a distance of up to 2 m from other group members and new individuals were attracted to the group, especially during feeding, leaving it for foraging. Large groups were more unstable than small, while groups containing only adults were more stable than groups of adults and juveniles. According to the Z-score analysis to investigate the sequence and behavioral routine, lone individuals were more ! .7! ! involved in foraging and feeding, while resting was more common in groups. Foraging and feeding were more common in homogeneous groups (individuals of the same age class), while heterogeneous groups (different age classes) were often involved in socialization, displaying a broader behavioral repertoire. Foraging and resting behavior presented higher stability (continuous duration in minutes) than the other behaviors. The analysis of breathing intervals in synchronized groups showed significant differences depending on type of behavior, composition and area preference. During resting, breathing intervals were of longer duration, and groups with calves showed shorter breathing intervals than groups without calves. Lone individuals also preferred areas called corral , often used for the entrapment of fishes. The Markov chain analysis revealed behavioral changes in the presence of boats, according to the type of group composition. Groups composed of adults presented decreased resting and increased in traveling during the presence of boats. Groups of adults and juveniles showed a massive reduction of socialization, while the behavior transition probability traveling-traveling was higher in groups of adults and calves. In the presence of the boats, stability of resting was reduced by one third of its original duration and traveling more than doubled. The behavioral patterns analyzed are discussed in light of socio-ecological models concerning costs and benefits of proximity between individuals and behavioral optimization. Furthermore, significant changes in behavioral patterns indicate that Guiana dolphins, at Pipa Beach, have suffered the effects of tourism as a result of violation of rules of conduct established for the study area
Resumo:
In marmosets, it was observed that the synchrony among circadian activity profiles of animals that cohabite in family groups is stronger than those of the same sex and age of different families. Inside the group, it is stronger between the younger ones than between them and their parents. However, the mechanisms involved in the social synchrony are unknown. With the aim to investigate the synchronization mechanisms involved in the synchrony between the circadian activity profiles during cohabitation in pairs of marmosets, the motor activity was continuously registered by the use of actmeters on three dyads. The pairs were maintained in two different conditions of illumination: light-dark cycle LD 12:12 (LD cohabitation I – 21 days), and thereafter in LL (~350 lux). Under LL, the pairs were submitted to four experimental situations: 1. Cohabitation (LLJ I – 24 days), 2. Removal of one member of the pair to another room with similar conditions (LLS I – 20 days), 3. Reintroduction of the separated member in the cage of the first situation (LLJ II – 30 days) and 4. Removal of a member from each pair to another experimental room (LLS II – 7 days), to evaluate the mechanisms of synchronization. Ultimately, the members of each pair were reintroduced in the cage and were kept in LD cycle 12:12 (LDJ II – 11 days). The rhythms of pairs free-ran in LL, with identical periods between the members of each pair during the two stages of cohabitation. In the stages in which the animals were separated, only the rhythms of two females free-ran in the first stage and of three animals in the second one. In those conditions, the rhythms of animals of each pair showed different endogenous periods. Besides, during cohabitation in LD and LL, the members of each pair showed a stable phase relationship in the beginning of the active phase, while in the stages in which the animals were separated it was noticed a breaking in the stability in the phase relationships between the circadian activity profiles, with an increase in the difference in the phase angles between them. During cohabitation, at the transition between LD and LL, all animals showed free-running rhythms anticipating progressively the beginning and the end of the active phase in a phase similar to the previous condition, showing signs of entrainment to the previous LD. While in the posterior stages this was observed in only three animals between: LLT I and LLS I, and LLT II and LLS II, evidencing signs of entrainment to social cues between the members of each pair. On the other hand, one animal delayed progressively between LLT I and LLS I, three animals delayed between LLS I and LLT II, and three animals between LLT II and LLS II, perhaps by entrainment to the animals maintained outdoors in the colony. Similar process was observed in four animals between LLS II and LDT II, indicating entrainment to LD. In the transition between LLS I and LLT II, signs of masking was observed in the rhythm of a female in response to the male and in another pair in the rhythm of the male in regard to that of the female. The general and maximum correlations in the circadian activity profiles were stronger during cohabitation in LD and LL than in the absence of social contact in LL, evidencing the social effect. The cohabiting pairs had higher values of the maximum correlation in LD and LL than when the profiles were correlated to animals of different cages, with same or different sexes. Similar results were observed in the general correlation. Therefore, it is suggested that cohabitation induces a strong synchrony between circadian activity profiles in marmosets, which involves entrainment and masking. Nevertheless, additional studies are necessary to evaluate the effect of social cues on the synchronization of the circadian rhythm in pairs of marmosets in the absence of external social cues in order to confirm this hypothesis.