11 resultados para Ameloblastoma
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Ameloblastoma and adenomatoid odontogenic tumor are odontogenic tumors arising from the odontogenic epithelium with distinct clinical behavior. In attempt to comprehend the interaction between the odontogenic tumor cells and the extracellular matrix, the present work evaluated and compared the immunohistochemical expression of the matrix metalloproteinases-1 (MMP-1), -2 (MMP-2) and -9 (MMP-9) in 20 cases of ameloblastoma and 10 adenomatoid odontogenic tumor. MMP-1 exhibited exuberant expression in the parenchyma and in the stroma of both studied tumors, while the MMP-2 showed varied expression with about of 80% and 60% of the neoplastic cells exhibiting positivity in the ameloblastoma and adenomatoid odontogenic tumor, respectively. With relation to the MMP-2 expression by the mesenchymal cells, it was observed that 65% of the ameloblastoma and 80% of the adenomatoid odontogenic tumor were positive. The immunoreactivity of MMP-9 was detected in all studied cases, although its expression had occurred predominantely in less than 50% of the parenchyma cells of the ameloblastoma, while in about of 60% of the adenomatoid odontogenic tumor more than 50% of cells were positive. The mesenchymal cells were positive to MMP-9 in 65% of the ameloblastoma and in 80% of the adenomatoid odontogenic tumor, respectively. Statistically significant difference was observed to the MMP-1 expression with relation to MMP-2 and MMP-9 in the ameloblastoma (p < 0.001). It was not possible to perform statistical analysis to the cases of adenomatoid odontogenic tumor, however there was a tendency toward a differential expression of the MMP-1 with relation to other studied MMPs. These results suggest that MMP-1, - 2 and -9 are implicated in the growth and progression of both tumors analyzed as well as the more pronounced participation of the stroma in the ameloblastoma could together to be related to the higher clinical aggressiveness
Immunoexpression of integrins in ameloblastoma, adenomatoid odontogenic tumor, and human tooth germs
Resumo:
The expression of integrins alpha2beta1, alpha3beta1, and alpha5beta1 in 30 ameloblastomas (20 solid and 10 unicystic tumors), 12 adenomatoid odontogenic tumors (AOTs), and 5 human tooth germs in different stages of odontogenesis was analyzed. The distribution, location, pattern, and intensity of immunohistochemical expression were evaluated. Intensity was analyzed using scores (0 = absence, 1 = weak staining, and 2 = strong staining). No difference in the immunoexpression of the integrins was observed between solid and unicystic ameloblastomas. When these two ameloblastoma types were pooled into a single group, the following significant differences were found: immunoexpression of integrin alpha2beta1 was stronger in ameloblastomas than in AOTs and tooth germs, and the expression of integrin alpha5beta1 was stronger in ameloblastomas than in AOTs. The lack of detection of integrin alpha3beta1 in tooth germs and its detection in the odontogenic tumors studied suggest that this integrin might be used as a marker of neoplastic transformation in odontogenic tissues.
Immunoexpression of integrins in ameloblastoma, adenomatoid odontogenic tumor, and human tooth germs
Resumo:
The expression of integrins alpha2beta1, alpha3beta1, and alpha5beta1 in 30 ameloblastomas (20 solid and 10 unicystic tumors), 12 adenomatoid odontogenic tumors (AOTs), and 5 human tooth germs in different stages of odontogenesis was analyzed. The distribution, location, pattern, and intensity of immunohistochemical expression were evaluated. Intensity was analyzed using scores (0 = absence, 1 = weak staining, and 2 = strong staining). No difference in the immunoexpression of the integrins was observed between solid and unicystic ameloblastomas. When these two ameloblastoma types were pooled into a single group, the following significant differences were found: immunoexpression of integrin alpha2beta1 was stronger in ameloblastomas than in AOTs and tooth germs, and the expression of integrin alpha5beta1 was stronger in ameloblastomas than in AOTs. The lack of detection of integrin alpha3beta1 in tooth germs and its detection in the odontogenic tumors studied suggest that this integrin might be used as a marker of neoplastic transformation in odontogenic tissues.
Resumo:
We investigated the immunohistochemistry expression of claudins -1 and -7 in ameloblastoma and in human dental germs on the pattern of distribution (focal, regional or diffuse), the cells that expressed (if central or peripheral) and the location of that expression in the cell components recital membrane, cytoplasm and nucleus. Among the 29 cases of ameloblastoma, 24 were type solid and 6 unicystic. In 7 mandibular specimens of human fetuses found dental germs from the stage of bud to the crown. We note that the pattern of expression in the dental germs was variable for claudinas studied according to the cell type and stage of differentiation and was invariate only in the cells of stellate reticulum. In epithelium internal of enamel organ, claudin-1 has been decreasing with the progression of differentiation as to claudina-7 that was found in the cells of the peripheral papilla. For ameloblastoma the expression was more significant than that observed in dental germs. Fisher s exact test no found association between the expression of claudinas cells in central and peripheral and the type of ameloblastoma (solid or unicystic). Thus, in general the claudin-1 was positive in the central cell of 93,1% of the cases and in peripheral cells of 51,7%. The claudin-7 was expressed in the cells of all cases central and peripheral cells from 89,7%. For both claudins the distribution was predominantly diffuse cells both in central and peripheral cells. Given our findings it is suggested that the expression of claudins may be indicative of the involvement of these molecules in morphogenetics events culminating with the dental development and that possibly influence the development of neoplastic ameloblastoma
Resumo:
BMPs are components superfamily ligands transformation growth fator-β (TGF-β) secreted into the extracellular environment, with mechanisms of intercellular communication through specific ligands and receptors in various target cells, being recognized for its influence in osteogenic induction, also play an important role in tissue homeostasis, cell proliferation, differentiation control , in addition to being present in the development of various malignancies. The aim of this study was to compare the immunohistochemical expression of BMP-2, BMP-4 and its receptors BMPRIA and BMPRII in cases of ameloblastoma and adenomatoid odontogenic tumor. The sample consisted of 20 cases of solid ameloblastoma (SA), 10 cases of ameloblastoma unicystic (UA) and 16 cases of adenomatoid odontogenic tumor (AOT). The expression of BMPs and their receptors was evaluated in the parenchyma and stroma of lesions, establishing the percentage of immunopositive cells (0 - negative; 1-1 % to 10 % of cells positive; 2 - 11% to 25% of positive cells; 3 - 26% to 50% of cells positive; 4 - 51% to 75 % of positive cells; 5 - more than 75% positive cells). Analysis of the expression of BMP-2 revealed no statistically significant differences in parenchymal (p = 0.925) and stromal component (p = 0.345) between the groups, as well as BMP-4 (p = 0.873 / p = 0.131). In the epithelial component, SA and AOT had a higher frequency of score 5. In turn, all cases of UA were classified as score 5. The analysis of the stromal component showed no statistically significant difference between groups with respect to median scores BMPRIA positivity (p = 0.768) and BMPRII (p = 0.779). In the epithelial component of SA and UA, no statistically significant correlations between imunoexpression proteins analyzed were observed. In turn, the group of AOT, statistically significant positive correlations between the scores of expression of all studied proteins were found. In the stromal component, statistically significant positive correlations were found only in the SA group in BMP -4 and BMPRII (r = 0.476; p = .034), in the UA in BMP-4 and BMPRIA (r = 0.709; p = 0.022). The results of this study suggest that the BMPs and their receptors are involved in the development process odontogenic tumors. BMP-4, in turn, besides being present in odontogenic tumors have the capacity to form mineralized material.
Resumo:
Ameloblastomas and keratocystic odontogenic tumors (KOT) represent odontogenic lesions that, despite their benign nature, are distinguished by a distinct biological behavior, characterized by locally aggressive growth and recurrent episodes. The gnathic bone resorption caused by the growth of these lesions is a key to the expansion of the same, both being mediated by osteoclastic cells like enzymatic activity of various matrix metalloproteinases (MMPs) factor. The expression of stimulatory factors and inhibitors of bone resorption has been correlated with the development of these lesions, with emphasis to some MMPs such as collagenases and gelatinases and tissue inhibitors of metalloproteinases (TIMPs), among others. Based on the premise that stimulatory and inhibitory factors of osteolytic processes can be decisive for the growth rate of intraosseous odontogenic lesions, this experiment evaluated the immunoreactivity of MMP-9, -13 and TIMP-1 protein in the epithelium and mesenchyme of ameloblastoma and the KOT specimens, by a quantitative analysis of the immunoreactivity cells. Statistical analysis was performed using the Mann-Whitney and Wilcoxon tests with a significance level set at 5 %. Immunohistochemical expression of MMP-9, -13 and TIMP-1 was observed in 100% of cases both in the epithelium and in mesenchyme. The immunoreactivity in the epithelium of KOT and ameloblastomas revealed a predominance of score 3 for MMP-9 (p=0.382) and MMP-13 (p=0.069) and no statistically significance for TIMP-1, the latter being significantly higher immunoreactivity in ameloblastomas. In the mesenchyme, there was a higher score immunoreactivity of MMP-13 (p=0.031) in ameloblastomas in relation to KOT, whereas for MMP-9 and TIMP-1 no statistically significant difference (p=0.403 was observed, p=1.000). The calculation of the ratio of scores revealed expression of proteins in general, similarity of the lesions, a significant predominance of equal expression of TIMP-1 and MMP-9 was observed only in the epithelium of ameloblastoma. The marked immunostaining of MMP-9 , MMP-13 and TIMP-1 in epithelium and mesenchyme of the lesion indicate that these proteins involved in ECM remodeling required for tumor progression, however, specific differences in the expression of some of these proteins, are not sufficient to suggest differences in the biological behavior of ameloblastomas and KOTs
Resumo:
Myofibroblasts are cells that exhibit a hybrid phenotype, sharing the morphological characteristics of fibroblasts and smooth muscle cells, which is acquired during a process called differentiation. These cells then start to express -SMA, a marker that can be used for their identification. Studies suggest that myofibroblasts are related to the aggressiveness of different tumors and that TGF-1 and IFN- play a role in myofibroblast differentiation, stimulating or inhibiting this differentiation, respectively. The objective of this study was to investigate the role of myofibroblasts in epithelial odontogenic tumors, correlating the presence of these cells with the aggressiveness of the tumor. Immunohistochemistry was used to evaluate the expression of TGF-1 and IFN- in myofibroblast differentiation, as well as the expression of MMP-13, which is activated by myofibroblasts, and of EMMPRIN (extracellular matrix metalloproteinase inducer) as a precursor of this MMP. The sample consisted of 20 solid ameloblastomas, 10 unicystic ameloblastomas, 20 odontogenic keratocysts, and 20 adenomatoid odontogenic tumors. For evaluation of myofibroblasts, anti- -SMA-immunoreactive cells were quantified in connective tissue close to the epithelium. Immunoexpression of TGF-1, IFN-, MMP-13 and EMMPRIN was evaluated in the epithelial and connective tissue components, attributing scores of 0 to 4. The results showed a higher concentration of myofibroblasts in solid ameloblastomas (mean of 30.55), followed by odontogenic keratocysts (22.50), unicystic ameloblastomas (20.80), and adenomatoid odontogenic tumors (19.15) (p=0.001). No significant correlation between TGF-1 and IFN- was observed during the process of myofibroblast differentiation. There was also no correlation between the quantity of myofibroblasts and MMP-13 expression. Significant correlations were found between MMP-13 and TGF-1 (r=0.087; p=0.011), between MMP- 13 and IFN- (r=0.348; p=0.003), as well as between EMMPRIN and MMP-13 (r=0.474; p<0.001) and between EMMPRIN and IFN- (r=0.393; p=0.001). The higher quantity of myofibroblasts observed in solid ameloblastomas, odontogenic keratocysts and unicystic ameloblastomas suggests that these cells are one of the factors responsible for the more aggressive biological behavior of these tumors, although the myofibroblast population was not correlated with TGF-1, IFN-, MMP-13 or EMMPRIN. The correlation between MMP- 13 and TGF-1 suggests that the latter induces the expression of this metalloproteinase. The present results also support the well-established role of EMMPRIN as an inducer of MMP-13. Furthermore, the relationship between EMMPRIN and IFN- and between MMP-13 and IFN- suggests synergism in the antifibrotic effect of these markers
Resumo:
The development and progression of odontogenic tumors have been associated with an imbalance in the activity of growth factors, adhesion molecules, extracellular matrix proteins and their degradation enzymes, angiogenic factors and osteolytic. Some studies have shown that interaction relationships inductive epithelial / mesenchymal determinants of Odontogenesis are mimicked by these tumors. The objective of this research was to investigate the immunolocalization of growth factors (BMP-4 and FGF-8) and Sindecan-1 structural protein in a series of odontogenic tumors presenting different biological behaviors, to contribute to a better understanding of the role of these proteins in tumor development. The sample consisted of 21 of the solid ameloblastoma, odontogenic keratocysts 19 and 14 odontogenic adenomatoid tumors. Increased Sindecan-1 immunostaining was seen in the epithelium of the lesions when compared with mesenchyme. In ameloblastoma and odontogenic keratocysts, this expression was higher than in AOT. Epithelial expression of BMP4 showed quantitatively similar in the three studied lesions; however, when anlisada mesenchymal immunoreactivity, was detected significant higher expression when compared to the ameloblastoma keratocysts. In ameloblastoma, mesenchymal expression was predominantly (p = 0.008), while in keratocyst higher expression in the epithelium was observed (p = 0.046). In all injuries, strong or moderate correlation was observed in the BMP-4 immunoreactivity in the epithelium and mesenchyme. FGF-8, no injury was observed difference between the immunoreactivity in the epithelium or mesenchyme, however in ameloblastoma positive correlation was found (Spearman correlation, rho = 0.857, p <0.001). The results of this study suggest that the three evaluated biomarkers actively involved in the pathogenesis of lesions, especially the expression of ameloblastomas indicating a strong interaction between parenchymal and stromal cells which may contribute to its marked aggressiveness.
Resumo:
benign epithelial odontogenic lesions are great clinical importance entities that develop in the jaws from the tissues that form teeth. It has been shown that in benign and malignant tumors, are present in a large number of tumor stem cells, which has great implications in the development of these lesions. Oct-4 and CD44 have been demos as important markers for tumoral stem cells. The objective of this study was to identify epithelial cells expressing stem cell markers by immunohistochemical expression of Oct-4 and CD44 in a series of cases of benign epithelial odontogenic lesions. The sample was comprised of 20 cases of odontogenic keratocyst (OKC), 20 cases of solid/multicystic ameloblastoma and 20 cases of adenomatoid odontogenic tumor (AOT). The expression of Oct-4 and CD44 was evaluated in epithelial lesions using the percentage of positive cells (PP) and the intensity of expression (IE), being realized the sum of these scores, resulting in Total Immunostaining Score (TIS) ranging 0 to 7. The results were submitted to the appropriate statistical test (nonparametric Kruskal-Wallis and Spearman correlation coefficient). All cases were positive for both markers and most showed high expression of both markers. The analysis of Oct-4 expression revealed no statistically significant differences (p = 0.406) among the studied lesions. Regarding the CD44 expression, there was a statistically significant difference between the cases of ameloblastoma and TOA in relation to the CCO, with the latter show more cases in the score 7 (p = 0.034). In the correlation analysis of the immunoreactivity of both markers in the three lesions studied, there was no statistically significant correlation. The results of this study identified the presence of cells with stemness characteristics arranged at various sites in the epithelial component of the studied lesions suggesting their possible role in the histogenesis and differentiation in benign epithelial odontogenic lesions, thus contributing to the development of these lesions.
Resumo:
benign epithelial odontogenic lesions are great clinical importance entities that develop in the jaws from the tissues that form teeth. It has been shown that in benign and malignant tumors, are present in a large number of tumor stem cells, which has great implications in the development of these lesions. Oct-4 and CD44 have been demos as important markers for tumoral stem cells. The objective of this study was to identify epithelial cells expressing stem cell markers by immunohistochemical expression of Oct-4 and CD44 in a series of cases of benign epithelial odontogenic lesions. The sample was comprised of 20 cases of odontogenic keratocyst (OKC), 20 cases of solid/multicystic ameloblastoma and 20 cases of adenomatoid odontogenic tumor (AOT). The expression of Oct-4 and CD44 was evaluated in epithelial lesions using the percentage of positive cells (PP) and the intensity of expression (IE), being realized the sum of these scores, resulting in Total Immunostaining Score (TIS) ranging 0 to 7. The results were submitted to the appropriate statistical test (nonparametric Kruskal-Wallis and Spearman correlation coefficient). All cases were positive for both markers and most showed high expression of both markers. The analysis of Oct-4 expression revealed no statistically significant differences (p = 0.406) among the studied lesions. Regarding the CD44 expression, there was a statistically significant difference between the cases of ameloblastoma and TOA in relation to the CCO, with the latter show more cases in the score 7 (p = 0.034). In the correlation analysis of the immunoreactivity of both markers in the three lesions studied, there was no statistically significant correlation. The results of this study identified the presence of cells with stemness characteristics arranged at various sites in the epithelial component of the studied lesions suggesting their possible role in the histogenesis and differentiation in benign epithelial odontogenic lesions, thus contributing to the development of these lesions.
Resumo:
OBJECTIVE: The aim was to analyze the expression of E-cadherin and beta-catenin in ameloblastomas and tooth germs to determine their roles in cell differentiation processes and invasiveness compared with odontogenesis. STUDY DESIGN: Twenty-one ameloblastoma cases (16 solid and 5 unicystic tumors) and 5 tooth germs were submitted to the immunohistochemical detection of E-cadherin and beta-catenin. Immunoreactivity was evaluated using descriptive and semiquantitative analysis, investigating the location and intensity of staining. The Fisher exact test was performed, and P values of <.05 were considered to indicate statistical significance. RESULTS: There was no statistically significant difference in the expression of E-cadherin and beta-catenin between solid and unicystic ameloblastomas (P = .59; P = .63; respectively). The same was found when comparing solid and unicystic ameloblastomas with the tooth germs for both E-cadherin (P = .53; P = .44; respectively) and beta-catenin (P = .12; P = .16; respectively). Nuclear staining of beta-catenin was observed in only 4 cases (3 solid and 1 unicystic tumor). CONCLUSION: The results showed no differences in the expression of E-cadherin or beta-catenin between tooth germs and solid and unicystic ameloblastomas. The expression of these molecules seems mainly to be related to the process of cell differentiation.