15 resultados para Aluminio - Soldagem

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation presents a discussion on the level of risk awareness of students who have welding practice in the laboratories at CEFET/PI, both in Teresina and Floriano. Its main goal is to investigate risk factors involving students, teachers and employees that work in these laboratories. It s an empirical survey, held among a certain amount of students from the course in Mechanic Technology. For data analysis, the concept of risk was compared to the students direct measure of perception. The main results suggest the students must be better informed, more risk aware and more competent, in order to avoid accidents. They also point to a strong need for a more formal and effective performance to assure full consciousness about the risks involving the welding practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For contain beneficial properties, aluminum alloys are gaining more importance in different industrial areas, becoming the subject of study in several academic fields. When related to welding these alloys have some peculiarities that may hinder the union, such as microscopic oxide layer present on the metal surface. The MIG welding process, also known as GMAW, has developed versions that can be effective for welding aluminum. Knowing this, for this paper, two versions of pulsed MIG (CC + and CA) were chosen to evaluate which best suits pass by filling bevel on AA5083 aluminum sheets with 8 and 12 mm thick respectively. Furthermore, two types of wire, ER5087 and ER5183 were evaluated. To evaluate the process and versions of the wires, the high-speed cameras and thermal were used to monitor the metal transfer and the thermal behavior respectively, and the metallographic analysis for macrographic view of the weld beads and non-destructive testing by radiography for observation of possible discontinuities. It was found that the technique of MIG-P CA showed better results ahead of another technique both welding conditions imposed. When connected to the wires, they showed similar results, with uniform cords and seamless

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study offers an analytical approach in order to provide a determination of the temperature field developed during the DC TIG welding of a thin plate of aluminum. The non-linear characteristics of the phenomenon, such as the dependence of the thermophysical and mechanical properties with temperature were considered in this study. In addition to the conductive heat exchange process, were taken into account the exchange by natural convection and radiation. A transient analysis is performed in order to obtain the temperature field as a function of time. It is also discussed a three-dimensional modeling of the heat source. The results obtained from the analytical model were be compared with the experimental ones and those available in the literature. The analytical results show a good correlation with the experimental ones available in the literature, thus proving the feasibility and efficiency of the analytical method for the simulation of the heat cycle for this welding process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper suggests modifications in coating of electrodes providing an alternative for execution of welding with low hydrogen electrode AWS E7018 without having to dry it, reducing thus the cost and time of manufacturing of high resistance welds. The welds in this research were developed with basic coated electrodes (hygroscopic) – SMAW process – externally painted with aluminum spray paint for high temperatures or wrapped with thin plastic films (PVC) and aluminum foil films used commonly for food protection. The basic premise is that establishing a barrier between the atmosphere and the electrode coating could reduce the effects of high hygroscopicity presented by coatings of low hydrogen, minimizing this way the main source of supply of hydrogen to the fusion pool during welding. It is also expected that the addition of new materials from the electrode coating to the fusion pool would induce metallurgical changes in the deposited metal and, as a consequence, modifications in its mechanical properties. This research dealt with measuring the dissolved hydrogen in the deposited metal after welding with modified electrodes, evaluating the influence of these changes in the produced microstructures and in the mechanical properties of the resulting weld, and comparing the obtained results with the standard welding procedures and with the recently developed waterproof electrodes. The results obtained in most samples welded with modified electrodes showed increased mechanical resistance and increased tenacity due to the increased percentage of acicular ferrite in metal deposited without significant elevation of hardness, when compared with the traditional welding with AWS E7018 electrode and with ELBRÁS BRH4R waterproof electrode. The diffusing hydrogen measured in the modified electrodes was kept inside the parameters defined by international codes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper suggests modifications in coating of electrodes providing an alternative for execution of welding with low hydrogen electrode AWS E7018 without having to dry it, reducing thus the cost and time of manufacturing of high resistance welds. The welds in this research were developed with basic coated electrodes (hygroscopic) – SMAW process – externally painted with aluminum spray paint for high temperatures or wrapped with thin plastic films (PVC) and aluminum foil films used commonly for food protection. The basic premise is that establishing a barrier between the atmosphere and the electrode coating could reduce the effects of high hygroscopicity presented by coatings of low hydrogen, minimizing this way the main source of supply of hydrogen to the fusion pool during welding. It is also expected that the addition of new materials from the electrode coating to the fusion pool would induce metallurgical changes in the deposited metal and, as a consequence, modifications in its mechanical properties. This research dealt with measuring the dissolved hydrogen in the deposited metal after welding with modified electrodes, evaluating the influence of these changes in the produced microstructures and in the mechanical properties of the resulting weld, and comparing the obtained results with the standard welding procedures and with the recently developed waterproof electrodes. The results obtained in most samples welded with modified electrodes showed increased mechanical resistance and increased tenacity due to the increased percentage of acicular ferrite in metal deposited without significant elevation of hardness, when compared with the traditional welding with AWS E7018 electrode and with ELBRÁS BRH4R waterproof electrode. The diffusing hydrogen measured in the modified electrodes was kept inside the parameters defined by international codes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photodynamic therapy (PDT) consists of a non-toxic photosensitizing agent (FS) administration followed by a laser source resulting in a sequence of photochemical and photobiological processes that generate reactive oxygen species (ROS) that damaging cells. The present work evaluated the effects of PDT nanoemulsion-aluminum chloride phthalocyanine (AlClFc) mediated on malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels, which represent indicators involved in oxidative stress and antioxidant defenses. For this purpose, this study used 120 female rats of the Rattus norvegicus species, Wistar race, divided into 5 groups: Healthy (H), with periodontal disease (PD), with periodontal disease and treatment with FS (F), with periodontal disease and treatment with the laser (L); and periodontal disease and treatment with PDT (FL). An experimental model for represent periodontal disease (PD) was induced by ligature (split-mouth). Seven days later the induction of PD, the treatments were instituted according to the groups. In the group treated with PDT was applied 40μl FS (5μM) followed by laser irradiation diode InGaAlP (660nm, 100J / cm2). The rats were sacrificed on the 7th and 28th day after treatment and tissue specimens were removed and subjected to histological, immunohistochemical methods and enzymatic colorimetric measurements with detection by UV / VIS spectroscopy. Inflammatory changes, connective tissue disorganization and alveolar bone loss were displaying in groups with PD induced. The enzyme dosages showed that MDA levels were higher in PD induced groups, with no statistically significant differences (p> 0.05). High levels of GSH were found in groups L (p = 0.028) and FL (p = 0.028) compared with PD group, with statistically significant differences. Immunohistochemistry for SOD showed higher immunostaining in L and FL groups, compared to the PD group without statistically significant differences (p> 0.05). GPx showed lower immunoreactivity in the DP group when compared to the other groups and statistically significant differences were observed between the DPxL groups (p <0.05). TFD administered in this experiment did not induce elevation of MDA levels significantly increased the GSH levels and showed intense immunostaining pada SOD and GPx, showing that this therapy does not accentuated lipid peroxidation, however, it was able to induce effects on the antioxidant defenses processes. The LBI therapy appeared to show photomodulatory promoting effects reduction of the MDA levels, increasing GSH levels and with intense immunostaining for SOD and GPx, demonstrating that laser therapy induced antioxidant effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The failure of materials is always an unwelcome event for several reasons: human lives are put in danger, economic losses, and interference in the availability of products and services. Although the causes of failures and behaviour of materials can be known, the prevention of such a condition is difficult to be guaranteed. Among the failures, wear abrasion by the low voltage is the kind of failure that occurs in more equipment and parts industry. The Plants Sucroalcooleiras suffer significant losses because of such attrition, this fact that motivated their choice for the development of this work. For both, were considered failures in the swing hammers desfibradores stopped soon after the exchange provided in accordance with tonnage of cane processed, then were analyzed by the level of wear testing of rubber wheel defined by the standard ASTM G65-91.The failures were classified as to the origin of the cause and mechanism, moreover, were prepared with samples of welding procedures according to ASME code, sec. IX as well, using the technique of thermal spraying to analyze the performance of these materials produced in laboratories, and compares them with the solder used in the plant. It was observed that the bodies-of-proof prepared by the procedure described as welding, and the thermal spraying the results of losing weight have been minimized significantly compared to the preparations in the plant. This is because the use of techniques more appropriate and more controlled conditions of the parameters of welding. As for the thermal spraying, this technique has presented a satisfactory result, but requires the use of these coatings in the best condition for real affirmation of the results

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective is to analyze the abrasive wear resistance to the low stress of the elements that make up the organs of road machinery that are exposed directly to contact with abrasives. These samples were analyzed after these elements are coated superficially by the process of welding electrode coated with (SAER) and the manual process of coating type LVOF thermal spraying. As well, is to provide suggestions for a better recovery and return of these elements, which are reducing costs and avoiding downtime in the fronts of service. The samples were made from a substrate of carbon ABNT 1045 tempered steel, following the same specifications and composition of metals and alloys of constituents was followed the standard governing the dimensions of these samples and in accordance with the corresponding size. The results were evaluated by testing the hardness, abrasion resistance to wear by the low stress and the loss of volume involving the microstructure of coatings analyzed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work a studied the high energy milling effect in microstructure and magnetic properties of the WC-10wt.%Co composite. The composite powders were prepared by mechanical mixed and milled at 2 hours, 100 hours, 200 hours and 300 hours in planetary milling. After this process the composite were compacted in stainless steel die with cylindrical county of 10 mm of diameter, at pressure 200 Mpa and sintered in a resistive furnace in argon atmosphere at 1400 oC for 5 min. The sintered composite were cutted, inlaid, sandpapered, and polished. The microestrutural parameters of the composite was analyzed by X-ray diffraction, scanning electronic microscopy, optical microscopy, hardness, magnetic propriety and Rietveld method analyze. The results shows, with milling time increase the particle size decrease, it possibility minor temperature of sintering. The increase of milling time caused allotropic transformation in cobalt phase and cold welding between particles. The cold welding caused the formation of the particle composite. The X-ray diffraction pattern of composite powders shows the WC peaks intensity decrease with the milling time increase. The X-ray diffraction pattern of the composite sintered samples shows the other phases. The magnetic measurements detected a significant increase in the coercitive field and a decrease in the saturation magnetization with milling time increase. The increase coercitive field it was also verified with decrease grain size with milling time increase. For the composite powders the increase coercitive field it was verified with particle size reduction and saturation magnetization variation is relate with the variation of free cobalt. The Rietveld method analyze shows at milling time increase the mean crystalline size of WC, and Co-cfc phases in composite sintered sample are higher than in composite powders. The mean crystallite size of Co-hc phase in composite powders is higher than in composite sintered sample. The mean lattice strains of WC, Co-hc and Co-cfc phases in composite powders are higher than in composite sintered samples. The cells parameters of the composite powder decrease at milling time increase this effect came from the particle size reduction at milling time increase. In sintered composite the cells parameters is constant with milling time increase

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The resistance of aluminum and their alloys, to the corrosion phenomenon, in aqueous solutions, is a result of the oxide layer formed. However, the corrosion process in the aluminum alloy is associated with the presence a second phase of particles or the presence of chloride ions which promote the disruption of the oxide layer located producing the corrosion process. On the other hand, the term water produced is used to describe the water after the separation of the oil and gas in API separators. The volumes of produced water arrive around 5 more times to the volume of oil produced. The greatest feature of the water is the presence of numerous pollutants. Due to the increased volume of waste around the world in the current decade, the outcome and the effect of the discharge of produced water on the environment has recently become an important issue of environmental concern where numerous treatments are aimed at reducing these contaminants before disposal. Then, this study aims to investigate the electrochemical corrosion behavior of aluminum alloy 6060 in presence of water produced and the influence of organic components as well as chloride ions, by using the electrochemical techniques of linear polarization. The modification of the passive layer and the likely breakpoints were observed by atomic force microscopy (AFM). In the pit formation potential around -0.4 to -0.8 V/EAg/AgCl was observed that the diffusion of chloride ions occurs via the layer formed with the probable formation of pits. Whereas, at temperatures above 65 °C, it was observed that the range of potential for thepit formation was -0.4 to -0.5 V/EAg/AgCl. In all reactions, the concentration of Al(OH)3 in the form of a gel was observed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To obtain a process stability and a quality weld bead it is necessary an adequate parameters set: base current and time, pulse current and pulse time, because these influence the mode of metal transfer and the weld quality in the MIG-P, sometimes requiring special sources with synergistic modes with external control for this stability. This work aims to analyze and compare the effects of pulse parameters and droplet size in arc stability in MIG-P, four packets of pulse parameters were analysed: Ip = 160 A, tp = 5.7 ms; Ip = 300 A and tp = 2 ms, Ip = 350 A, tp = 1.2 ms and Ip = 350 A, tp = 0.8 ms. Each was analyzed with three different drop diameters: drop with the same diameter of the wire electrode; droplet diameter larger drop smaller than the diameter of the wire electrode. For purposes of comparison the same was determined relation between the average current and welding speed was determined generating a constant (Im / Vs = K) for all parameters. Welding in flat plate by simple deposition for the MIG-P with a distance beak contact number (DBCP) constant was perfomed subsequently making up welding in flat plate by simple deposition with an inclination of 10 degrees to vary the DBCP, where by assessment on how the MIG-P behaved in such a situation was possible, in addition to evaluating the MIG-P with adaptive control, in order to maintain a constant arc stability. Also high speed recording synchronized with acquiring current x voltage (oscillogram) was executed for better interpretation of the transfer mechanism and better evaluation in regard to the study of the stability of the process. It is concluded that parameters 3 and 4 exhibited greater versatility; diameters drop equal to or slightly less than the diameter of the wire exhibited better stability due to their higher frequency of detachment, and the detachment of the drop base does not harm the maintenance the height of the arc

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The failure of materials is always an unwelcome event for several reasons: human lives are put in danger, economic losses, and interference in the availability of products and services. Although the causes of failures and behaviour of materials can be known, the prevention of such a condition is difficult to be guaranteed. Among the failures, wear abrasion by the low voltage is the kind of failure that occurs in more equipment and parts industry. The Plants Sucroalcooleiras suffer significant losses because of such attrition, this fact that motivated their choice for the development of this work. For both, were considered failures in the swing hammers desfibradores stopped soon after the exchange provided in accordance with tonnage of cane processed, then were analyzed by the level of wear testing of rubber wheel defined by the standard ASTM G65-91.The failures were classified as to the origin of the cause and mechanism, moreover, were prepared with samples of welding procedures according to ASME code, sec. IX as well, using the technique of thermal spraying to analyze the performance of these materials produced in laboratories, and compares them with the solder used in the plant. It was observed that the bodies-of-proof prepared by the procedure described as welding, and the thermal spraying the results of losing weight have been minimized significantly compared to the preparations in the plant. This is because the use of techniques more appropriate and more controlled conditions of the parameters of welding. As for the thermal spraying, this technique has presented a satisfactory result, but requires the use of these coatings in the best condition for real affirmation of the results

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective is to analyze the abrasive wear resistance to the low stress of the elements that make up the organs of road machinery that are exposed directly to contact with abrasives. These samples were analyzed after these elements are coated superficially by the process of welding electrode coated with (SAER) and the manual process of coating type LVOF thermal spraying. As well, is to provide suggestions for a better recovery and return of these elements, which are reducing costs and avoiding downtime in the fronts of service. The samples were made from a substrate of carbon ABNT 1045 tempered steel, following the same specifications and composition of metals and alloys of constituents was followed the standard governing the dimensions of these samples and in accordance with the corresponding size. The results were evaluated by testing the hardness, abrasion resistance to wear by the low stress and the loss of volume involving the microstructure of coatings analyzed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work a studied the high energy milling effect in microstructure and magnetic properties of the WC-10wt.%Co composite. The composite powders were prepared by mechanical mixed and milled at 2 hours, 100 hours, 200 hours and 300 hours in planetary milling. After this process the composite were compacted in stainless steel die with cylindrical county of 10 mm of diameter, at pressure 200 Mpa and sintered in a resistive furnace in argon atmosphere at 1400 oC for 5 min. The sintered composite were cutted, inlaid, sandpapered, and polished. The microestrutural parameters of the composite was analyzed by X-ray diffraction, scanning electronic microscopy, optical microscopy, hardness, magnetic propriety and Rietveld method analyze. The results shows, with milling time increase the particle size decrease, it possibility minor temperature of sintering. The increase of milling time caused allotropic transformation in cobalt phase and cold welding between particles. The cold welding caused the formation of the particle composite. The X-ray diffraction pattern of composite powders shows the WC peaks intensity decrease with the milling time increase. The X-ray diffraction pattern of the composite sintered samples shows the other phases. The magnetic measurements detected a significant increase in the coercitive field and a decrease in the saturation magnetization with milling time increase. The increase coercitive field it was also verified with decrease grain size with milling time increase. For the composite powders the increase coercitive field it was verified with particle size reduction and saturation magnetization variation is relate with the variation of free cobalt. The Rietveld method analyze shows at milling time increase the mean crystalline size of WC, and Co-cfc phases in composite sintered sample are higher than in composite powders. The mean crystallite size of Co-hc phase in composite powders is higher than in composite sintered sample. The mean lattice strains of WC, Co-hc and Co-cfc phases in composite powders are higher than in composite sintered samples. The cells parameters of the composite powder decrease at milling time increase this effect came from the particle size reduction at milling time increase. In sintered composite the cells parameters is constant with milling time increase

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The resistance of aluminum and their alloys, to the corrosion phenomenon, in aqueous solutions, is a result of the oxide layer formed. However, the corrosion process in the aluminum alloy is associated with the presence a second phase of particles or the presence of chloride ions which promote the disruption of the oxide layer located producing the corrosion process. On the other hand, the term water produced is used to describe the water after the separation of the oil and gas in API separators. The volumes of produced water arrive around 5 more times to the volume of oil produced. The greatest feature of the water is the presence of numerous pollutants. Due to the increased volume of waste around the world in the current decade, the outcome and the effect of the discharge of produced water on the environment has recently become an important issue of environmental concern where numerous treatments are aimed at reducing these contaminants before disposal. Then, this study aims to investigate the electrochemical corrosion behavior of aluminum alloy 6060 in presence of water produced and the influence of organic components as well as chloride ions, by using the electrochemical techniques of linear polarization. The modification of the passive layer and the likely breakpoints were observed by atomic force microscopy (AFM). In the pit formation potential around -0.4 to -0.8 V/EAg/AgCl was observed that the diffusion of chloride ions occurs via the layer formed with the probable formation of pits. Whereas, at temperatures above 65 °C, it was observed that the range of potential for thepit formation was -0.4 to -0.5 V/EAg/AgCl. In all reactions, the concentration of Al(OH)3 in the form of a gel was observed