6 resultados para Algebraic geometric code
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
In Mathematics literature some records highlight the difficulties encountered in the teaching-learning process of integers. In the past, and for a long time, many mathematicians have experienced and overcome such difficulties, which become epistemological obstacles imposed on the students and teachers nowadays. The present work comprises the results of a research conducted in the city of Natal, Brazil, in the first half of 2010, at a state school and at a federal university. It involved a total of 45 students: 20 middle high, 9 high school and 16 university students. The central aim of this study was to identify, on the one hand, which approach used for the justification of the multiplication between integers is better understood by the students and, on the other hand, the elements present in the justifications which contribute to surmount the epistemological obstacles in the processes of teaching and learning of integers. To that end, we tried to detect to which extent the epistemological obstacles faced by the students in the learning of integers get closer to the difficulties experienced by mathematicians throughout human history. Given the nature of our object of study, we have based the theoretical foundation of our research on works related to the daily life of Mathematics teaching, as well as on theorists who analyze the process of knowledge building. We conceived two research tools with the purpose of apprehending the following information about our subjects: school life; the diagnosis on the knowledge of integers and their operations, particularly the multiplication of two negative integers; the understanding of four different justifications, as elaborated by mathematicians, for the rule of signs in multiplication. Regarding the types of approach used to explain the rule of signs arithmetic, geometric, algebraic and axiomatic , we have identified in the fieldwork that, when multiplying two negative numbers, the students could better understand the arithmetic approach. Our findings indicate that the approach of the rule of signs which is considered by the majority of students to be the easiest one can be used to help understand the notion of unification of the number line, an obstacle widely known nowadays in the process of teaching-learning
Resumo:
The objective of the present work was develop a study about the writing and the algebraic manipulation of symbolical expressions for perimeter and area of some convex polygons, approaching the properties of the operations and equality, extending to the obtaining of the formulas of length and area of the circle, this one starting on the formula of the perimeter and area of the regular hexagon. To do so, a module with teaching activities was elaborated based on constructive teaching. The study consisted of a methodological intervention, done by the researcher, and had as subjects students of the 8th grade of the State School Desembargador Floriano Cavalcanti, located on the city of Natal, Rio Grande do Norte. The methodological intervention was done in three stages: applying of a initial diagnostic evaluation, developing of the teaching module, and applying of the final evaluation based on the Mathematics teaching using Constructivist references. The data collected in the evaluations was presented as descriptive statistics. The results of the final diagnostic evaluation were analyzed in the qualitative point of view, using the criteria established by Richard Skemp s second theory about the comprehension of mathematical concepts. The general results about the data from the evaluations and the applying of the teaching module showed a qualitative difference in the learning of the students who participated of the intervention
Resumo:
This work aims at the implementation and adaptation of a computational model for the study of the Fischer-Tropsch reaction in a slurry bed reactor from synthesis gas (CO+H2) for the selective production of hydrocarbons (CnHm), with emphasis on evaluation of the influence of operating conditions on the distribution of products formed during the reaction.The present model takes into account effects of rigorous phase equilibrium in a reactive flash drum, a detailed kinetic model able of predicting the formation of each chemical species of the reaction system, as well as control loops of the process variables for pressure and level of slurry phase. As a result, a system of Differential Algebraic Equations was solved using the computational code DASSL (Petzold, 1982). The consistent initialization for the problem was based on phase equilibrium formed by the existing components in the reactor. In addition, the index of the system was reduced to 1 by the introduction of control laws that govern the output of the reactor products. The results were compared qualitatively with experimental data collected in the Fischer-Tropsch Synthesis plant installed at Laboratório de Processamento de Gás - CTGÁS-ER-Natal/RN
Resumo:
This study was conducted from a preliminary research to identify the conceptual and didactic approach to the logarithms given in the main textbooks adopted by the Mathematics teachers in state schools in the School of Natal, in Rio Grande do Norte. I carried out an historical investigation of the logarithms in order to reorient the math teacher to improve its educational approach this subject in the classroom. Based on the research approach I adopted a model of the log based on three concepts: the arithmetic, the geometric and algebraic-functional. The main objective of this work is to redirect the teacher for a broad and significant understanding of the content in order to overcome their difficulties in the classroom and thus realize an education that can reach the students learning. The investigative study indicated the possibility of addressing the logarithms in the classroom so transversalizante and interdisciplinary. In this regard, I point to some practical applications of this matter are fundamental in the study of natural phenomena as earthquakes, population growth, among others. These practical applications are connected, approximately, Basic Problematization Units (BPUs) to be used in the classroom. In closing, I offer some activities that helped teachers to understand and clarify the meaningful study of this topic in their teaching practice
Resumo:
The present investigation includes a study of Leonhard Euler and the pentagonal numbers is his article Mirabilibus Proprietatibus Numerorum Pentagonalium - E524. After a brief review of the life and work of Euler, we analyze the mathematical concepts covered in that article as well as its historical context. For this purpose, we explain the concept of figurate numbers, showing its mode of generation, as well as its geometric and algebraic representations. Then, we present a brief history of the search for the Eulerian pentagonal number theorem, based on his correspondence on the subject with Daniel Bernoulli, Nikolaus Bernoulli, Christian Goldbach and Jean Le Rond d'Alembert. At first, Euler states the theorem, but admits that he doesn t know to prove it. Finally, in a letter to Goldbach in 1750, he presents a demonstration, which is published in E541, along with an alternative proof. The expansion of the concept of pentagonal number is then explained and justified by compare the geometric and algebraic representations of the new pentagonal numbers pentagonal numbers with those of traditional pentagonal numbers. Then we explain to the pentagonal number theorem, that is, the fact that the infinite product(1 x)(1 xx)(1 x3)(1 x4)(1 x5)(1 x6)(1 x7)... is equal to the infinite series 1 x1 x2+x5+x7 x12 x15+x22+x26 ..., where the exponents are given by the pentagonal numbers (expanded) and the sign is determined by whether as more or less as the exponent is pentagonal number (traditional or expanded). We also mention that Euler relates the pentagonal number theorem to other parts of mathematics, such as the concept of partitions, generating functions, the theory of infinite products and the sum of divisors. We end with an explanation of Euler s demonstration pentagonal number theorem
Resumo:
The development of computers and algorithms capable of making increasingly accurate and rapid calculations as well as the theoretic foundation provided by quantum mechanics has turned computer simulation into a valuable research tool. The importance of such a tool is due to its success in describing the physical and chemical properties of materials. One way of modifying the electronic properties of a given material is by applying an electric field. These effects are interesting in nanocones because their stability and geometric structure make them promising candidates for electron emission devices. In our study we calculated the first principles based on the density functional theory as implemented in the SIESTA code. We investigated aluminum nitride (AlN), boron nitride (BN) and carbon (C), subjected to external parallel electric field, perpendicular to their main axis. We discuss stability in terms of formation energy, using the chemical potential approach. We also analyze the electronic properties of these nanocones and show that in some cases the perpendicular electric field provokes a greater gap reduction when compared to the parallel field