5 resultados para Algebraic Geometric Codes

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Mathematics literature some records highlight the difficulties encountered in the teaching-learning process of integers. In the past, and for a long time, many mathematicians have experienced and overcome such difficulties, which become epistemological obstacles imposed on the students and teachers nowadays. The present work comprises the results of a research conducted in the city of Natal, Brazil, in the first half of 2010, at a state school and at a federal university. It involved a total of 45 students: 20 middle high, 9 high school and 16 university students. The central aim of this study was to identify, on the one hand, which approach used for the justification of the multiplication between integers is better understood by the students and, on the other hand, the elements present in the justifications which contribute to surmount the epistemological obstacles in the processes of teaching and learning of integers. To that end, we tried to detect to which extent the epistemological obstacles faced by the students in the learning of integers get closer to the difficulties experienced by mathematicians throughout human history. Given the nature of our object of study, we have based the theoretical foundation of our research on works related to the daily life of Mathematics teaching, as well as on theorists who analyze the process of knowledge building. We conceived two research tools with the purpose of apprehending the following information about our subjects: school life; the diagnosis on the knowledge of integers and their operations, particularly the multiplication of two negative integers; the understanding of four different justifications, as elaborated by mathematicians, for the rule of signs in multiplication. Regarding the types of approach used to explain the rule of signs arithmetic, geometric, algebraic and axiomatic , we have identified in the fieldwork that, when multiplying two negative numbers, the students could better understand the arithmetic approach. Our findings indicate that the approach of the rule of signs which is considered by the majority of students to be the easiest one can be used to help understand the notion of unification of the number line, an obstacle widely known nowadays in the process of teaching-learning

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present work was develop a study about the writing and the algebraic manipulation of symbolical expressions for perimeter and area of some convex polygons, approaching the properties of the operations and equality, extending to the obtaining of the formulas of length and area of the circle, this one starting on the formula of the perimeter and area of the regular hexagon. To do so, a module with teaching activities was elaborated based on constructive teaching. The study consisted of a methodological intervention, done by the researcher, and had as subjects students of the 8th grade of the State School Desembargador Floriano Cavalcanti, located on the city of Natal, Rio Grande do Norte. The methodological intervention was done in three stages: applying of a initial diagnostic evaluation, developing of the teaching module, and applying of the final evaluation based on the Mathematics teaching using Constructivist references. The data collected in the evaluations was presented as descriptive statistics. The results of the final diagnostic evaluation were analyzed in the qualitative point of view, using the criteria established by Richard Skemp s second theory about the comprehension of mathematical concepts. The general results about the data from the evaluations and the applying of the teaching module showed a qualitative difference in the learning of the students who participated of the intervention

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The processing of materials through plasma has been growing enough in the last times in several technological applications, more specifically in surfaces treatment. That growth is due, mainly, to the great applicability of plasmas as energy source, where it assumes behavior thermal, chemical and/or physical. On the other hand, the multiplicity of simultaneous physical effects (thermal, chemical and physical interactions) present in plasmas increases the complexity for understanding their interaction with solids. In that sense, as an initial step for the development of that subject, the present work treats of the computational simulation of the heating and cooling processes of steel and copper samples immersed in a plasma atmosphere, by considering two experimental geometric configurations: hollow and plane cathode. In order to reach such goal, three computational models were developed in Fortran 90 language: an one-dimensional transient model (1D, t), a two-dimensional transient model (2D, t) and a two-dimensional transient model (2D, t) which take into account the presence of a sample holder in the experimental assembly. The models were developed based on the finite volume method and, for the two-dimensional configurations, the effect of hollow cathode on the sample was considered as a lateral external heat source. The main results obtained with the three computational models, as temperature distribution and thermal gradients in the samples and in the holder, were compared with those developed by the Laboratory of Plasma, LabPlasma/UFRN, and with experiments available in the literature. The behavior showed indicates the validity of the developed codes and illustrate the need of the use of such computational tool in that process type, due to the great easiness of obtaining thermal information of interest

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was conducted from a preliminary research to identify the conceptual and didactic approach to the logarithms given in the main textbooks adopted by the Mathematics teachers in state schools in the School of Natal, in Rio Grande do Norte. I carried out an historical investigation of the logarithms in order to reorient the math teacher to improve its educational approach this subject in the classroom. Based on the research approach I adopted a model of the log based on three concepts: the arithmetic, the geometric and algebraic-functional. The main objective of this work is to redirect the teacher for a broad and significant understanding of the content in order to overcome their difficulties in the classroom and thus realize an education that can reach the students learning. The investigative study indicated the possibility of addressing the logarithms in the classroom so transversalizante and interdisciplinary. In this regard, I point to some practical applications of this matter are fundamental in the study of natural phenomena as earthquakes, population growth, among others. These practical applications are connected, approximately, Basic Problematization Units (BPUs) to be used in the classroom. In closing, I offer some activities that helped teachers to understand and clarify the meaningful study of this topic in their teaching practice

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present investigation includes a study of Leonhard Euler and the pentagonal numbers is his article Mirabilibus Proprietatibus Numerorum Pentagonalium - E524. After a brief review of the life and work of Euler, we analyze the mathematical concepts covered in that article as well as its historical context. For this purpose, we explain the concept of figurate numbers, showing its mode of generation, as well as its geometric and algebraic representations. Then, we present a brief history of the search for the Eulerian pentagonal number theorem, based on his correspondence on the subject with Daniel Bernoulli, Nikolaus Bernoulli, Christian Goldbach and Jean Le Rond d'Alembert. At first, Euler states the theorem, but admits that he doesn t know to prove it. Finally, in a letter to Goldbach in 1750, he presents a demonstration, which is published in E541, along with an alternative proof. The expansion of the concept of pentagonal number is then explained and justified by compare the geometric and algebraic representations of the new pentagonal numbers pentagonal numbers with those of traditional pentagonal numbers. Then we explain to the pentagonal number theorem, that is, the fact that the infinite product(1 x)(1 xx)(1 x3)(1 x4)(1 x5)(1 x6)(1 x7)... is equal to the infinite series 1 x1 x2+x5+x7 x12 x15+x22+x26 ..., where the exponents are given by the pentagonal numbers (expanded) and the sign is determined by whether as more or less as the exponent is pentagonal number (traditional or expanded). We also mention that Euler relates the pentagonal number theorem to other parts of mathematics, such as the concept of partitions, generating functions, the theory of infinite products and the sum of divisors. We end with an explanation of Euler s demonstration pentagonal number theorem