6 resultados para Air content
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Current environmental concerns include the excessive consumption and inefficient use of non-renewable natural resources. The construction industry is considered one of the largest consumers of natural raw materials, significantly contributing to the environmental degradation of the planet. The use of calcareous quarry (RPPC) and porcelain tile polishing residues (RPP) as partial replacements of the cement in mortars is an interesting alternative to minimize the exploration of considerably large amounts of natural resources. The present study aimed at investigating the properties of fresh and hardened mortars produced using residues to replace cement. The residues used were fully characterized to determine their specific mass, unitary mass, particle size distribution and morphology, and composition. The performance of the mortars was compared to that of reference compositions, prepared without residues. A total of 18 compositions were prepared, 16 using residues and 2 reference ones. The mortars were prepared using Portland CP II F 32 cement, CH I hydrated lime, river sand and tap water. The compositions of the mortars were 1:1:6 and 1:0.5:4.5 (vol%), and water to cement ratios of 1.87 and 1.45 were used, respectively. The mortars in the fresh state were evaluated by consistency index, water retention, density of mass and incorporated air content tests. In their hardened state, the mortars were evaluated by apparent mass density, modulus of elasticity, flexural tensile strength, compressive strength and water absorption by capillarity. The mortars were also analyzed by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction and fluorescence. Finally, they were classified according to NBR 13281 standards. The mortars prepared using residues partially replacing the cement exhibited lower modulus of elasticity compared to the reference compositions, thus improving the performance in their intended use. On the downside, the water absorption by capillarity was affected by the presence of residues and both the tensile and compressive strength were reduced. However, from the overall standpoint, the replacement of cement by calcareous quarry or porcelain tile polishing residues did not result in significant changes in the properties of the mortars. Therefore, compositions containing these residues can be used in the construction industry
Resumo:
Generally, cellulose ethers improves mortar properties such as water retention, workability and setting time, along with adherence to the substrate. However, a major disadvantage of the addition of cellulose ethers in mortars is the delay in hydration of the cement. In this paper a cellulose phosphate (Cp) was synthesized water soluble and has been evaluated the effect of their incorporation into mortar based on Portland cement. Cellulose phosphate obtained was characterized by spectrophotometry Fourier transform infrared (FTIR), X-ray diffraction (XRD), elemental analysis and scanning electron microscopy (SEM). Mortar compositions were formulated with varying phosphorus content in cellulose and cellulose phosphate concentrations, when used in partial or total replacement of the commercial additive based hydroxyethyl methyl cellulose (HEMC). The mortars formulated with additives were prepared and characterized by: testing in the fresh state (consistency index, water retention, bulk density and air content incorporated) and in the hardened state (absorption by capillarity, density, flexural and compression strength). In mixtures the proportion of sand:cement of 1:5 (v / v) and factor a / c = 1.31 and water were held constant. Overall, the results showed that the celluloses phosphates employed in mortars added acted significantly when partially substituting the commercial additive. With regard to consistency index, water retention and bulk density in the fresh state and absorption by capillarity and bulk density apparent in the hardened state, showed no appreciable differences as compared to the commercial additive. The incorporated air content in the fresh state reduced markedly, but did not affect other properties. The mortars with cellulose phosphate, partially replacing the commercial additive showed an improvement of the properties of flexural strength and compressive strength
Resumo:
The coatings mortars are essential elements of building structures because they execute an important role in protecting walls and are particularly exposed to aggressive action responsible for its degradation over time. The importance of wall coverings has been the subject of discussion and analysis in the conservation and rehabilitation of old buildings. Are sometimes removed and replaced with inappropriate solutions of constructive point of view or architecture. The most commonly used coatings on walls of old buildings is based on traditional hydraulic lime mortars. The present study aims at the formulation of new lime- based mortars and aerial fine aggregate, in order to contribute to a better field of conservation and restoration mortar coating of old buildings. Residue was used for polishing porcelain as fine aggregate, replacing the aggregate (sand), in percentages 05-30% by mass. We conducted a thorough evaluation of the mortar properties in fresh and hardened state by comparing the performance of the same with a reference mortar. The residue used was characterized as the density, bulk density, and particle size laser, scanning electron microscopy, X-ray diffraction and X-ray fluorescence. Formulations were produced 7, 6 with residue and one commonly used formulation, which served as a reference. In the formulations of lime mortars air (hydrated lime powder CH-I) has been adopted a stroke volume (1:3) with constant binder, was varied and the water / binder and aggregate and waste. For evaluation of mortars fresh, proceeded to consistency analysis, specific gravity, water retention and air content embedded. In the hardened state assays were performed in specific gravity, water retention, modulus of elasticity, tensile strength in bending, compressive strength, water absorption by capillary action, adhesion, tensile strength, resistance to shrinkage and salts by of crystallization trials with resources chloride solution, nitrate and sulfate all sodium in prismatic at 90 days of age, in addition to the micro structural analysis of mortars. Based on the results we can see that the mortar formulated with 10% content of waste and the reference free retraction feature more stable closer to neutrality. The composition of 10% was obtained better performance against the action of the salt crystallization. The mortar with 15% residue obtained better density, lower air content embedded and high capacity for water retention developing good workability. The replacement of 20% of waste generates a satisfactory utilization of resistance to compression, flexion and traction grip the base. And, finally, it can be seen that the mortar with 10, 15 and 20% residual show, in principle, good suitability as coatings, thus enabling a final result consistent with durability, workability and aesthetics developing therefore a material with better performance to repair or replace existing mortars in old buildings
Resumo:
Current environmental concerns include the excessive consumption and inefficient use of non-renewable natural resources. The construction industry is considered one of the largest consumers of natural raw materials, significantly contributing to the environmental degradation of the planet. The use of calcareous quarry (RPPC) and porcelain tile polishing residues (RPP) as partial replacements of the cement in mortars is an interesting alternative to minimize the exploration of considerably large amounts of natural resources. The present study aimed at investigating the properties of fresh and hardened mortars produced using residues to replace cement. The residues used were fully characterized to determine their specific mass, unitary mass, particle size distribution and morphology, and composition. The performance of the mortars was compared to that of reference compositions, prepared without residues. A total of 18 compositions were prepared, 16 using residues and 2 reference ones. The mortars were prepared using Portland CP II F 32 cement, CH I hydrated lime, river sand and tap water. The compositions of the mortars were 1:1:6 and 1:0.5:4.5 (vol%), and water to cement ratios of 1.87 and 1.45 were used, respectively. The mortars in the fresh state were evaluated by consistency index, water retention, density of mass and incorporated air content tests. In their hardened state, the mortars were evaluated by apparent mass density, modulus of elasticity, flexural tensile strength, compressive strength and water absorption by capillarity. The mortars were also analyzed by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction and fluorescence. Finally, they were classified according to NBR 13281 standards. The mortars prepared using residues partially replacing the cement exhibited lower modulus of elasticity compared to the reference compositions, thus improving the performance in their intended use. On the downside, the water absorption by capillarity was affected by the presence of residues and both the tensile and compressive strength were reduced. However, from the overall standpoint, the replacement of cement by calcareous quarry or porcelain tile polishing residues did not result in significant changes in the properties of the mortars. Therefore, compositions containing these residues can be used in the construction industry
Resumo:
Generally, cellulose ethers improves mortar properties such as water retention, workability and setting time, along with adherence to the substrate. However, a major disadvantage of the addition of cellulose ethers in mortars is the delay in hydration of the cement. In this paper a cellulose phosphate (Cp) was synthesized water soluble and has been evaluated the effect of their incorporation into mortar based on Portland cement. Cellulose phosphate obtained was characterized by spectrophotometry Fourier transform infrared (FTIR), X-ray diffraction (XRD), elemental analysis and scanning electron microscopy (SEM). Mortar compositions were formulated with varying phosphorus content in cellulose and cellulose phosphate concentrations, when used in partial or total replacement of the commercial additive based hydroxyethyl methyl cellulose (HEMC). The mortars formulated with additives were prepared and characterized by: testing in the fresh state (consistency index, water retention, bulk density and air content incorporated) and in the hardened state (absorption by capillarity, density, flexural and compression strength). In mixtures the proportion of sand:cement of 1:5 (v / v) and factor a / c = 1.31 and water were held constant. Overall, the results showed that the celluloses phosphates employed in mortars added acted significantly when partially substituting the commercial additive. With regard to consistency index, water retention and bulk density in the fresh state and absorption by capillarity and bulk density apparent in the hardened state, showed no appreciable differences as compared to the commercial additive. The incorporated air content in the fresh state reduced markedly, but did not affect other properties. The mortars with cellulose phosphate, partially replacing the commercial additive showed an improvement of the properties of flexural strength and compressive strength
Resumo:
The coatings mortars are essential elements of building structures because they execute an important role in protecting walls and are particularly exposed to aggressive action responsible for its degradation over time. The importance of wall coverings has been the subject of discussion and analysis in the conservation and rehabilitation of old buildings. Are sometimes removed and replaced with inappropriate solutions of constructive point of view or architecture. The most commonly used coatings on walls of old buildings is based on traditional hydraulic lime mortars. The present study aims at the formulation of new lime- based mortars and aerial fine aggregate, in order to contribute to a better field of conservation and restoration mortar coating of old buildings. Residue was used for polishing porcelain as fine aggregate, replacing the aggregate (sand), in percentages 05-30% by mass. We conducted a thorough evaluation of the mortar properties in fresh and hardened state by comparing the performance of the same with a reference mortar. The residue used was characterized as the density, bulk density, and particle size laser, scanning electron microscopy, X-ray diffraction and X-ray fluorescence. Formulations were produced 7, 6 with residue and one commonly used formulation, which served as a reference. In the formulations of lime mortars air (hydrated lime powder CH-I) has been adopted a stroke volume (1:3) with constant binder, was varied and the water / binder and aggregate and waste. For evaluation of mortars fresh, proceeded to consistency analysis, specific gravity, water retention and air content embedded. In the hardened state assays were performed in specific gravity, water retention, modulus of elasticity, tensile strength in bending, compressive strength, water absorption by capillary action, adhesion, tensile strength, resistance to shrinkage and salts by of crystallization trials with resources chloride solution, nitrate and sulfate all sodium in prismatic at 90 days of age, in addition to the micro structural analysis of mortars. Based on the results we can see that the mortar formulated with 10% content of waste and the reference free retraction feature more stable closer to neutrality. The composition of 10% was obtained better performance against the action of the salt crystallization. The mortar with 15% residue obtained better density, lower air content embedded and high capacity for water retention developing good workability. The replacement of 20% of waste generates a satisfactory utilization of resistance to compression, flexion and traction grip the base. And, finally, it can be seen that the mortar with 10, 15 and 20% residual show, in principle, good suitability as coatings, thus enabling a final result consistent with durability, workability and aesthetics developing therefore a material with better performance to repair or replace existing mortars in old buildings