4 resultados para Adaptive object model
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
LOPES, Jose Soares Batista et al. Application of multivariable control using artificial neural networks in a debutanizer distillation column.In: INTERNATIONAL CONGRESS OF MECHANICAL ENGINEERING - COBEM, 19, 5-9 nov. 2007, Brasilia. Anais... Brasilia, 2007
Resumo:
In this work, we propose a Geographical Information System that can be used as a tool for the treatment and study of problems related with environmental and city management issues. It is based on the Scalable Vector Graphics (SVG) standard for Web development of graphics. The project uses the concept of remate and real-time mar creation by database access through instructions executed by browsers on the Internet. As a way of proving the system effectiveness, we present two study cases;.the first on a region named Maracajaú Coral Reefs, located in Rio Grande do Norte coast, and the second in the Switzerland Northeast in which we intended to promote the substitution of MapServer by the system proposed here. We also show some results that demonstrate the larger geographical data capability achieved by the use of the standardized codes and open source tools, such as Extensible Markup Language (XML), Document Object Model (DOM), script languages ECMAScript/ JavaScript, Hypertext Preprocessor (PHP) and PostgreSQL and its extension, PostGIS
Resumo:
LOPES, Jose Soares Batista et al. Application of multivariable control using artificial neural networks in a debutanizer distillation column.In: INTERNATIONAL CONGRESS OF MECHANICAL ENGINEERING - COBEM, 19, 5-9 nov. 2007, Brasilia. Anais... Brasilia, 2007
Resumo:
The segmentation of an image aims to subdivide it into constituent regions or objects that have some relevant semantic content. This subdivision can also be applied to videos. However, in these cases, the objects appear in various frames that compose the videos. The task of segmenting an image becomes more complex when they are composed of objects that are defined by textural features, where the color information alone is not a good descriptor of the image. Fuzzy Segmentation is a region-growing segmentation algorithm that uses affinity functions in order to assign to each element in an image a grade of membership for each object (between 0 and 1). This work presents a modification of the Fuzzy Segmentation algorithm, for the purpose of improving the temporal and spatial complexity. The algorithm was adapted to segmenting color videos, treating them as 3D volume. In order to perform segmentation in videos, conventional color model or a hybrid model obtained by a method for choosing the best channels were used. The Fuzzy Segmentation algorithm was also applied to texture segmentation by using adaptive affinity functions defined for each object texture. Two types of affinity functions were used, one defined using the normal (or Gaussian) probability distribution and the other using the Skew Divergence. This latter, a Kullback-Leibler Divergence variation, is a measure of the difference between two probability distributions. Finally, the algorithm was tested in somes videos and also in texture mosaic images composed by images of the Brodatz album