3 resultados para Acousto-optic programmable dispersive filter (AOPDF)
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
SANTANA, André M.; SOUZA, Anderson A. S.; BRITTO, Ricardo S.; ALSINA, Pablo J.; MEDEIROS, Adelardo A. D. Localization of a mobile robot based on odometry and natural landmarks using extended Kalman Filter. In: INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, 5., 2008, Funchal, Portugal. Proceedings... Funchal, Portugal: ICINCO, 2008.
Resumo:
This work presents simulation results of an identification platform compatible with the INPE Brazilian Data Collection System, modeled with SystemC-AMS. SystemC-AMS that is a library of C++ classes dedicated to the simulation of heterogeneous systems, offering a powerful resource to describe models in digital, analog and RF domains, as well as mechanical and optic. The designed model was divided in four parts. The first block takes into account the satellite s orbit, necessary to correctly model the propagation channel, including Doppler effect, attenuation and thermal noise. The identification block detects the satellite presence. It is composed by low noise amplifier, band pass filter, power detector and logic comparator. The controller block is responsible for enabling the RF transmitter when the presence of the satellite is detected. The controller was modeled as a Petri net, due to the asynchronous nature of the system. The fourth block is the RF transmitter unit, which performs the modulation of the information in BPSK ±60o. This block is composed by oscillator, mixer, adder and amplifier. The whole system was simulated simultaneously. The results are being used to specify system components and to elaborate testbenchs for design verification
Resumo:
This study shows the implementation and the embedding of an Artificial Neural Network (ANN) in hardware, or in a programmable device, as a field programmable gate array (FPGA). This work allowed the exploration of different implementations, described in VHDL, of multilayer perceptrons ANN. Due to the parallelism inherent to ANNs, there are disadvantages in software implementations due to the sequential nature of the Von Neumann architectures. As an alternative to this problem, there is a hardware implementation that allows to exploit all the parallelism implicit in this model. Currently, there is an increase in use of FPGAs as a platform to implement neural networks in hardware, exploiting the high processing power, low cost, ease of programming and ability to reconfigure the circuit, allowing the network to adapt to different applications. Given this context, the aim is to develop arrays of neural networks in hardware, a flexible architecture, in which it is possible to add or remove neurons, and mainly, modify the network topology, in order to enable a modular network of fixed-point arithmetic in a FPGA. Five synthesis of VHDL descriptions were produced: two for the neuron with one or two entrances, and three different architectures of ANN. The descriptions of the used architectures became very modular, easily allowing the increase or decrease of the number of neurons. As a result, some complete neural networks were implemented in FPGA, in fixed-point arithmetic, with a high-capacity parallel processing