9 resultados para Accelerated failure time model
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
We present residual analysis techniques to assess the fit of correlated survival data by Accelerated Failure Time Models (AFTM) with random effects. We propose an imputation procedure for censored observations and consider three types of residuals to evaluate different model characteristics. We illustrate the proposal with the analysis of AFTM with random effects to a real data set involving times between failures of oil well equipment
Resumo:
We presented in this work two methods of estimation for accelerated failure time models with random e_ects to process grouped survival data. The _rst method, which is implemented in software SAS, by NLMIXED procedure, uses an adapted Gauss-Hermite quadrature to determine marginalized likelihood. The second method, implemented in the free software R, is based on the method of penalized likelihood to estimate the parameters of the model. In the _rst case we describe the main theoretical aspects and, in the second, we briey presented the approach adopted with a simulation study to investigate the performance of the method. We realized implement the models using actual data on the time of operation of oil wells from the Potiguar Basin (RN / CE).
Resumo:
In this work we study the accelerated failure-time generalized Gamma regression models with a unified approach. The models attempt to estimate simultaneously the effects of covariates on the acceleration/deceleration of the timing of a given event and the surviving fraction. The method is implemented in the free statistical software R. Finally the model is applied to a real dataset referring to the time until the return of the disease in patients diagnosed with breast cancer
Resumo:
We considered prediction techniques based on models of accelerated failure time with random e ects for correlated survival data. Besides the bayesian approach through empirical Bayes estimator, we also discussed about the use of a classical predictor, the Empirical Best Linear Unbiased Predictor (EBLUP). In order to illustrate the use of these predictors, we considered applications on a real data set coming from the oil industry. More speci - cally, the data set involves the mean time between failure of petroleum-well equipments of the Bacia Potiguar. The goal of this study is to predict the risk/probability of failure in order to help a preventive maintenance program. The results show that both methods are suitable to predict future failures, providing good decisions in relation to employment and economy of resources for preventive maintenance.
Resumo:
This master´s thesis presents a reliability study conducted among onshore oil fields in the Potiguar Basin (RN/CE) of Petrobras company, Brazil. The main study objective was to build a regression model to predict the risk of failures that impede production wells to function properly using the information of explanatory variables related to wells such as the elevation method, the amount of water produced in the well (BSW), the ratio gas-oil (RGO), the depth of the production bomb, the operational unit of the oil field, among others. The study was based on a retrospective sample of 603 oil columns from all that were functioning between 2000 and 2006. Statistical hypothesis tests under a Weibull regression model fitted to the failure data allowed the selection of some significant predictors in the set considered to explain the first failure time in the wells
Resumo:
In Survival Analysis, long duration models allow for the estimation of the healing fraction, which represents a portion of the population immune to the event of interest. Here we address classical and Bayesian estimation based on mixture models and promotion time models, using different distributions (exponential, Weibull and Pareto) to model failure time. The database used to illustrate the implementations is described in Kersey et al. (1987) and it consists of a group of leukemia patients who underwent a certain type of transplant. The specific implementations used were numeric optimization by BFGS as implemented in R (base::optim), Laplace approximation (own implementation) and Gibbs sampling as implemented in Winbugs. We describe the main features of the models used, the estimation methods and the computational aspects. We also discuss how different prior information can affect the Bayesian estimates
Resumo:
In survival analysis, the response is usually the time until the occurrence of an event of interest, called failure time. The main characteristic of survival data is the presence of censoring which is a partial observation of response. Associated with this information, some models occupy an important position by properly fit several practical situations, among which we can mention the Weibull model. Marshall-Olkin extended form distributions other a basic generalization that enables greater exibility in adjusting lifetime data. This paper presents a simulation study that compares the gradient test and the likelihood ratio test using the Marshall-Olkin extended form Weibull distribution. As a result, there is only a small advantage for the likelihood ratio test
Resumo:
Survival models deals with the modelling of time to event data. In certain situations, a share of the population can no longer be subjected to the event occurrence. In this context, the cure fraction models emerged. Among the models that incorporate a fraction of cured one of the most known is the promotion time model. In the present study we discuss hypothesis testing in the promotion time model with Weibull distribution for the failure times of susceptible individuals. Hypothesis testing in this model may be performed based on likelihood ratio, gradient, score or Wald statistics. The critical values are obtained from asymptotic approximations, which may result in size distortions in nite sample sizes. This study proposes bootstrap corrections to the aforementioned tests and Bartlett bootstrap to the likelihood ratio statistic in Weibull promotion time model. Using Monte Carlo simulations we compared the nite sample performances of the proposed corrections in contrast with the usual tests. The numerical evidence favors the proposed corrected tests. At the end of the work an empirical application is presented.
Resumo:
Survival models deals with the modeling of time to event data. However in some situations part of the population may be no longer subject to the event. Models that take this fact into account are called cure rate models. There are few studies about hypothesis tests in cure rate models. Recently a new test statistic, the gradient statistic, has been proposed. It shares the same asymptotic properties with the classic large sample tests, the likelihood ratio, score and Wald tests. Some simulation studies have been carried out to explore the behavior of the gradient statistic in fi nite samples and compare it with the classic statistics in diff erent models. The main objective of this work is to study and compare the performance of gradient test and likelihood ratio test in cure rate models. We first describe the models and present the main asymptotic properties of the tests. We perform a simulation study based on the promotion time model with Weibull distribution to assess the performance of the tests in finite samples. An application is presented to illustrate the studied concepts