2 resultados para Abstractive summarization
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The relevance of rising healthcare costs is a main topic in complementary health companies in Brazil. In 2011, these expenses consumed more than 80% of the monthly health insurance in Brazil. Considering the administrative costs, it is observed that the companies operating in this market work, on average, at the threshold between profit and loss. This paper presents results after an investigation of the welfare costs of a health plan company in Brazil. It was based on the KDD process and explorative Data Mining. A diversity of results is presented, such as data summarization, providing compact descriptions of the data, revealing common features and intrinsic observations. Among the key findings was observed that a small portion of the population is responsible for the most demanding of resources devoted to health care
Resumo:
This research studies the application of syntagmatic analysis of written texts in the language of Brazilian Portuguese as a methodology for the automatic creation of extractive summaries. The automation of abstracts, while linked to the area of natural language processing (PLN) is studying ways the computer can autonomously construct summaries of texts. For this we use as presupposed the idea that switch to the computer the way a language is structured, in our case the Brazilian Portuguese, it will help in the discovery of the most relevant sentences, and consequently build extractive summaries with higher informativeness. In this study, we propose the definition of a summarization method that automatically perform the syntagmatic analysis of texts and through them, to build an automatic summary. The phrases that make up the syntactic structures are then used to analyze the sentences of the text, so the count of these elements determines whether or not a sentence will compose the summary to be generated