21 resultados para Abstraction.
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
This work aims to analyze the historical and epistemological development of the Group concept related to the theory on advanced mathematical thinking proposed by Dreyfus (1991). Thus it presents pedagogical resources that enable learning and teaching of algebraic structures as well as propose greater meaning of this concept in mathematical graduation programs. This study also proposes an answer to the following question: in what way a teaching approach that is centered in the Theory of Numbers and Theory of Equations is a model for the teaching of the concept of Group? To answer this question a historical reconstruction of the development of this concept is done on relating Lagrange to Cayley. This is done considering Foucault s (2007) knowledge archeology proposal theoretically reinforced by Dreyfus (1991). An exploratory research was performed in Mathematic graduation courses in Universidade Federal do Pará (UFPA) and Universidade Federal do Rio Grande do Norte (UFRN). The research aimed to evaluate the formation of concept images of the students in two algebra courses based on a traditional teaching model. Another experience was realized in algebra at UFPA and it involved historical components (MENDES, 2001a; 2001b; 2006b), the development of multiple representations (DREYFUS, 1991) as well as the formation of concept images (VINNER, 1991). The efficiency of this approach related to the extent of learning was evaluated, aiming to acknowledge the conceptual image established in student s minds. At the end, a classification based on Dreyfus (1991) was done relating the historical periods of the historical and epistemological development of group concepts in the process of representation, generalization, synthesis, and abstraction, proposed here for the teaching of algebra in Mathematics graduation course
Resumo:
The study was aimed to test a teaching module on the Zoltan Paul Dienes theory, focusing on the content: The transformation of measurements: length, areas and volumes. The study based on constructivist theory consisted in a methodological intervention with students of the 7th period of the Course of Pedagogy, in Central Campus, Federal University of Rio Grande do Norte (UFRN). A preliminary study with 40 students called diagnostic evaluation found that students did not understand the concept of measurements transformation and its processing steps. The latter was performed only with the help of the table of measurements transformation with no understanding of the content. He applied a pretest, a set of activities and a post-test. The latter was used as a tool for evaluation of the student learning process. The answers of these ones were evaluated according to the concept of reflective abstraction of Jean Piaget, one of the authors who influenced the Dienes theory
Resumo:
Large efforts have been maden by the scientific community on tasks involving locomotion of mobile robots. To execute this kind of task, we must develop to the robot the ability of navigation through the environment in a safe way, that is, without collisions with the objects. In order to perform this, it is necessary to implement strategies that makes possible to detect obstacles. In this work, we deal with this problem by proposing a system that is able to collect sensory information and to estimate the possibility for obstacles to occur in the mobile robot path. Stereo cameras positioned in parallel to each other in a structure coupled to the robot are employed as the main sensory device, making possible the generation of a disparity map. Code optimizations and a strategy for data reduction and abstraction are applied to the images, resulting in a substantial gain in the execution time. This makes possible to the high level decision processes to execute obstacle deviation in real time. This system can be employed in situations where the robot is remotely operated, as well as in situations where it depends only on itself to generate trajectories (the autonomous case)
Resumo:
We revisit the problem of visibility, which is to determine a set of primitives potentially visible in a set of geometry data represented by a data structure, such as a mesh of polygons or triangles, we propose a solution for speeding up the three-dimensional visualization processing in applications. We introduce a lean structure , in the sense of data abstraction and reduction, which can be used for online and interactive applications. The visibility problem is especially important in 3D visualization of scenes represented by large volumes of data, when it is not worthwhile keeping all polygons of the scene in memory. This implies a greater time spent in the rendering, or is even impossible to keep them all in huge volumes of data. In these cases, given a position and a direction of view, the main objective is to determine and load a minimum ammount of primitives (polygons) in the scene, to accelerate the rendering step. For this purpose, our algorithm performs cutting primitives (culling) using a hybrid paradigm based on three known techniques. The scene is divided into a cell grid, for each cell we associate the primitives that belong to them, and finally determined the set of primitives potentially visible. The novelty is the use of triangulation Ja 1 to create the subdivision grid. We chose this structure because of its relevant characteristics of adaptivity and algebrism (ease of calculations). The results show a substantial improvement over traditional methods when applied separately. The method introduced in this work can be used in devices with low or no dedicated processing power CPU, and also can be used to view data via the Internet, such as virtual museums applications
Resumo:
We propose a new approach to reduction and abstraction of visual information for robotics vision applications. Basically, we propose to use a multi-resolution representation in combination with a moving fovea for reducing the amount of information from an image. We introduce the mathematical formalization of the moving fovea approach and mapping functions that help to use this model. Two indexes (resolution and cost) are proposed that can be useful to choose the proposed model variables. With this new theoretical approach, it is possible to apply several filters, to calculate disparity and to obtain motion analysis in real time (less than 33ms to process an image pair at a notebook AMD Turion Dual Core 2GHz). As the main result, most of time, the moving fovea allows the robot not to perform physical motion of its robotics devices to keep a possible region of interest visible in both images. We validate the proposed model with experimental results
Resumo:
In multi-robot systems, both control architecture and work strategy represent a challenge for researchers. It is important to have a robust architecture that can be easily adapted to requirement changes. It is also important that work strategy allows robots to complete tasks efficiently, considering that robots interact directly in environments with humans. In this context, this work explores two approaches for robot soccer team coordination for cooperative tasks development. Both approaches are based on a combination of imitation learning and reinforcement learning. Thus, in the first approach was developed a control architecture, a fuzzy inference engine for recognizing situations in robot soccer games, a software for narration of robot soccer games based on the inference engine and the implementation of learning by imitation from observation and analysis of others robotic teams. Moreover, state abstraction was efficiently implemented in reinforcement learning applied to the robot soccer standard problem. Finally, reinforcement learning was implemented in a form where actions are explored only in some states (for example, states where an specialist robot system used them) differently to the traditional form, where actions have to be tested in all states. In the second approach reinforcement learning was implemented with function approximation, for which an algorithm called RBF-Sarsa($lambda$) was created. In both approaches batch reinforcement learning algorithms were implemented and imitation learning was used as a seed for reinforcement learning. Moreover, learning from robotic teams controlled by humans was explored. The proposal in this work had revealed efficient in the robot soccer standard problem and, when implemented in other robotics systems, they will allow that these robotics systems can efficiently and effectively develop assigned tasks. These approaches will give high adaptation capabilities to requirements and environment changes.
Resumo:
It is still common among contemporary educational proposals an overemphasis abstraction, to the formalism and symbolism of mathematical knowledge at the expense of the sociocultural aspects of Mathematics. Coming up by questioning some academic mathematical tenets and valuing knowledge developed in different sociocultural contexts within Mathematical Education, the Ethnomatematics is consolidating itself as a research field. Despite its contributions to the educational context, because its philosophical character and the paucity of debates about the subject, the implementation of educational proposals for basic education are scarce. Given this situation, this dissertation comes up with a view to develop an educational intervention in the light of Ethnomathematics in a class of 6th grade of an elementary school from a red ceramic industries workers community, located in a countryside from Russas-CE and from this intervention, to develop a set of pedagogical recommendations aiming basic education teachers. Adopting a perspective of qualitative research, particularly guided by action research, this study used observation, field diary, interviews and activities with students as tools for data collection. It was found that the use of field research as part of teaching and learning favored the placement of students as critical subjects of their own reality . Furthermore, the educational experience culminated in the development of a method of teaching based on a relationship between protocooperational Ethnomatematics and the Resolution of Problems. It is necessary to broaden the debate about the ways in which the Ethnomatematics can contribute to the school context, bringing proposals closer to the reality of basic education teachers in order to help the promotion of an education which values cultural diversity without taking away the students from the access of the academic knowledge
Resumo:
Natural selection shapes body and behavior of each species. For primates, the social environment constituted one of the greatest selective pressure for the development of their cognition. When we consider gender differences, we see that sexual selection also operates through different selective pressures for men and women not only in physical terms but in terms of cognitive skills. Among these, the primary cognitive abilities - that emerge naturally - and secondary - that rely on an artificial environment for learning - develop differently for each sex, making them suitable for specific tasks in different capacities. Previous studies utilized the Wason Selection Test a conditional logic tool - to measure, among several other things, the ability to recognize violation of rules in abstract contexts and social contexts. Subjects generally had better performance in the latter, however, in these studies possible differences motivated by learning in formal logic or genre were not considered. Our study investigated these two variables, as well as the time spent to solve each task. Furthermore, we used an index to take into account the rights and wrongs of the participants in tasks. We realized that although learning in formal logic does not bring significant differences in solving tests, the gender differences are strongly observed when we consider the social contexts and abstract. Women perform better in social tasks. This can be explained due to different sexual selective pressures for this gender in terms of one-on-one relationships within the group. Men are better at tasks of abstract context and this is probably due to the same reason. Their capabilities for territory defense, habitat navigation and forming coalitions depends on primary cognitive abilities that support secondary cognitive skills of abstraction. Thus, gender differences are a factor to be taken into account in controlling future experiments with the same tool
Resumo:
In today`s society the use of so-called information technology and communication (ICT), is promoting a revolution in the forms of teaching and learning through the methods of distance learning courses, especially in higher education. Studies show that students in this way have great difficulties in the learning process, especially when dealing with experimental subjects that require high power of abstraction as chemistry. The goal of this work is to promote improvement in the teaching and learning in the discipline Chemistry of Life offered for the Bachelor`s Degree in Chemistry in distance UFRN. For this we analyzed evidence of the semester 2011.2, in order to identify what are the main difficulties of the students on the assessments. That`s why video lessons related to matters that create the majority of difficulties for students were developed, the final product this work. Being obtained the improvements by video classes in the learning process of the students, from a questionnaire answered by the students in the virtual learning environment, and from their success rate at the end of the course
Resumo:
With hardware and software technologies advance, it s also happenning modifications in the development models of computational systems. New methodologies for user interface specification are being created with user interface description languages (UIDL). The UIDLs are a way to have a precise description in a language with more abstraction and independent of how will be implemented. A great problem is that even using these nowadays methodologies, we still have a big distance between the UIDLs and its design, what means, the distance between abstract and concrete. The tool BRIDGE (Interface Design Generator Environment) was created with the intention of being a linking bridge between a specification language (the Interactive Message Modeling Language IMML) and its implementation in Java, linking the abstract (specification) to the concrete (implementation). IMML is a language based on models, that allows the designer works in distinct abstraction levels, being each model a distinct abstraction level. IMML is a XML language, that uses the Semiotic Engineering concepts, that deals the computational system, with the user interface and its elements like a metacommunicative artifact, where these elements must to transmit a message to the user about what task must to be realized and the way to reach this goal. With BRIDGE, we intend to supply a lot of support to the design task, being the user interface prototipation the greater of them. BRIDGE allows the design becomes easier and more intuitive coming from an interface specification language
Resumo:
This paper proposes a systematic approach to management of variability modelsdriven and aspects using the mechanisms of approaches Aspect-Oriented Software Development (AOSD) and Model-Driven Development (MDD). The main goal of the approach, named CrossMDA-SPL, is to improve the management(gerência), modularization and isolation ou separation of the variability of the LPSs of architecture in a high level of abstraction (model) at the design and implementing phases of development Software Product Lines (SPLs), exploiting the synergy between AOSD and MDD. The CrossMDA-SPL approach defines some artifacts basis for advance the separation clear in between the mandatory (bounden) and optional features in the architecture of SPL. The artifacts are represented by two models named: (i) core model (base domain) - responsible for specify the common features the all members of the SPL, and (ii) variability model - responsible for represent the variables features of SPL. In addition, the CrossMDA-SPL approach is composed of: (i) guidelines for modeling and representation of variability, (ii) CrossMDA-SPL services and process, and (iii) models of the architecture of SPL or product instance of SPL. The guidelines use the advantages of AOSD and MDD to promote a better modularization of the variable features of the architecture of SPL during the creation of core and variability models of the approach. The services and sub-processes are responsible for combination automatically, through of process of transformation between the core and variability models, and the generation of new models that represent the implementation of the architecture of SPL or a instance model of SPL. Mechanisms for effective modularization of variability for architectures of SPL at model level. The concepts are described and measured with the execution of a case study of an SPL for management systems of transport electronic tickets
Resumo:
The use of middleware technology in various types of systems, in order to abstract low-level details related to the distribution of application logic, is increasingly common. Among several systems that can be benefited from using these components, we highlight the distributed systems, where it is necessary to allow communications between software components located on different physical machines. An important issue related to the communication between distributed components is the provision of mechanisms for managing the quality of service. This work presents a metamodel for modeling middlewares based on components in order to provide to an application the abstraction of a communication between components involved in a data stream, regardless their location. Another feature of the metamodel is the possibility of self-adaptation related to the communication mechanism, either by updating the values of its configuration parameters, or by its replacement by another mechanism, in case of the restrictions of quality of service specified are not being guaranteed. In this respect, it is planned the monitoring of the communication state (application of techniques like feedback control loop), analyzing performance metrics related. The paradigm of Model Driven Development was used to generate the implementation of a middleware that will serve as proof of concept of the metamodel, and the configuration and reconfiguration policies related to the dynamic adaptation processes. In this sense was defined the metamodel associated to the process of a communication configuration. The MDD application also corresponds to the definition of the following transformations: the architectural model of the middleware in Java code, and the configuration model to XML
Resumo:
Many challenges have been imposed on the middleware to support applications for digital TV because of the heterogeneity and resource constraints of execution platforms. In this scenario, the middleware must be highly configurable so that it can be customized to meet the requirements of applications and underlying platforms. This work aims to present the GingaForAll, a software product line developed for the Ginga - the middleware of the Brazilian Digital TV (SBTVD). GingaForAll adds the concepts of software product line, aspect orientation and model-driven development to allow: (i) the specification of the common characteristics and variables of the middleware, (ii) the modularization of crosscutting concerns - both mandatory and concepts variables - through aspects, (iii) the expression of concepts as a set of models that increase the level of abstraction and enables management of various software artifacts in terms of configurable models. This work presents the architecture of the software product line that implements such a tool and architecture that supports automatic customization of middleware. The work also presents a tool that implements the process of generating products GingaForAll
Resumo:
On the last years, several middleware platforms for Wireless Sensor Networks (WSN) were proposed. Most of these platforms does not consider issues of how integrate components from generic middleware architectures. Many requirements need to be considered in a middleware design for WSN and the design, in this case, it is possibility to modify the source code of the middleware without changing the external behavior of the middleware. Thus, it is desired that there is a middleware generic architecture that is able to offer an optimal configuration according to the requirements of the application. The adoption of middleware based in component model consists of a promising approach because it allows a better abstraction, low coupling, modularization and management features built-in middleware. Another problem present in current middleware consists of treatment of interoperability with external networks to sensor networks, such as Web. Most current middleware lacks the functionality to access the data provided by the WSN via the World Wide Web in order to treat these data as Web resources, and they can be accessed through protocols already adopted the World Wide Web. Thus, this work presents the Midgard, a component-based middleware specifically designed for WSNs, which adopts the architectural patterns microkernel and REST. The microkernel architectural complements the component model, since microkernel can be understood as a component that encapsulates the core system and it is responsible for initializing the core services only when needed, as well as remove them when are no more needed. Already REST defines a standardized way of communication between different applications based on standards adopted by the Web and enables him to treat WSN data as web resources, allowing them to be accessed through protocol already adopted in the World Wide Web. The main goals of Midgard are: (i) to provide easy Web access to data generated by WSN, exposing such data as Web resources, following the principles of Web of Things paradigm and (ii) to provide WSN application developer with capabilities to instantiate only specific services required by the application, thus generating a customized middleware and saving node resources. The Midgard allows use the WSN as Web resources and still provide a cohesive and weakly coupled software architecture, addressing interoperability and customization. In addition, Midgard provides two services needed for most WSN applications: (i) configuration and (ii) inspection and adaptation services. New services can be implemented by others and easily incorporated into the middleware, because of its flexible and extensible architecture. According to the assessment, the Midgard provides interoperability between the WSN and external networks, such as web, as well as between different applications within a single WSN. In addition, we assessed the memory consumption, the application image size, the size of messages exchanged in the network, and response time, overhead and scalability on Midgard. During the evaluation, the Midgard proved satisfies their goals and shown to be scalable without consuming resources prohibitively
Resumo:
Aspect-Oriented Software Development (AOSD) is a technique that complements the Object- Oriented Software Development (OOSD) modularizing several concepts that OOSD approaches do not modularize appropriately. However, the current state-of-the art on AOSD suffers with software evolution, mainly because aspect definition can stop to work correctly when base elements evolve. A promising approach to deal with that problem is the definition of model-based pointcuts, where pointcuts are defined based on a conceptual model. That strategy makes pointcut less prone to software evolution than model-base elements. Based on that strategy, this work defines a conceptual model at high abstraction level where we can specify software patterns and architectures that through Model Driven Development techniques they can be instantiated and composed in architecture description language that allows aspect modeling at architecture level. Our MDD approach allows propagate concepts in architecture level to another abstraction levels (design level, for example) through MDA transformation rules. Also, this work shows a plug-in implemented to Eclipse platform called AOADLwithCM. That plug-in was created to support our development process. The AOADLwithCM plug-in was used to describe a case study based on MobileMedia System. MobileMedia case study shows step-by-step how the Conceptual Model approach could minimize Pointcut Fragile Problems, due to software evolution. MobileMedia case study was used as input to analyses evolutions on software according to software metrics proposed by KHATCHADOURIAN, GREENWOOD and RASHID. Also, we analyze how evolution in base model could affect maintenance on aspectual model with and without Conceptual Model approaches