3 resultados para Ablation génique conditionnelle

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analyze, in patients with primary hyperhidrosis (PH) who was undergone to videothoracoscopic sympathicotomy, the degree of vascular denervation after surgical transection of the thoracic sympathetic chain by measuring ultrasonografic parameters in carotid and vertebral arteries. Methods: Twenty-four patients with PH underwent forty-eight endoscopic thoracic sympathicotomy and were evaluated by duplex eco-doppler measuring systolic peak velocity (SPV), diastolic peak velocity (DPV), pulsatility index (PI) and resistivity index (RI) in bilateral common, internal and external carotids, besides bilateral vertebral arteries. The exams were performed before operations and a month later. Wilcoxon test was used to analyse the differences between the variables before and after the sympatholisis. Results: T3 sympathicotomy segment was the most frequent transection done (95,83%), as only ablation (25%) or in association with T4 (62,50%) or with T2 (8,33%). It was observed increase in RI and PI of the common carotid artery ( p<0,05). The DPV of internal carotid artery decreased in both sides (p<0,05). The SPV and the DPV of the right and left vertebral arteries also increased (p<0,05). Asymmetric findings were observed so that, arteries of the right side were the most frequently affected. Conclusions: Hemodynamic changes in vertebral and carotid arteries were observed after sympathicotomy for PH. SPV was the most often altered parameter, mostly in the right side arteries, meaning significant asymmetric changes in carotid and vertebral vessels. Therefore, the research findings deserve further investigations to observe if they have clinical inferences

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cerebral cortex of mammals is histologically organized into different layers of excitatory neurons that have distinct patterns of connections with cortical or subcortical targets. During development, these cortical layers are established through an intricate combination of neuronal specification and migration in a radial pattern known as "insideout": deep-layer neurons are generated prior to upper-layer neurons. In the last few decades, several genes encoding transcription factors involved in the sequential specification of neurons destined to different cortical layers have been identified. However, the influence of early-generated neurons in the specification of subsequent neuronal cohorts remains unclear. To investigate this possible influence, we induced the selective death of cortical neurons from layer V and VI before the generation of layer II, III and IV neurons. Thus, we can evaluate the effects of ablation of early born neurons on the phenotype of late born neurons. Our data shows that one-day after ablation, layer VI neurons expressing the transcription factor TBR1 are newly generated while virtually no neuron expressing TBR1 was generated in the same age in control animals. This suggests that progenitors involved in the generation of neurons destined for superficial layers suffer interference from the selective death of neurons in deep layers, changing their specification. We also observed that while TBR1-positive neurons are located exclusively in deep cortical layers of control animals, many TBR1-positive neurons are misplaced in superficial layers of ablated animals, suggesting that the migration of cortical neurons could be controlled independently of neuronal phenotypes. Furthermore, we observed an increase in layer V neurons expressing CTIP2 and neurons expressing SATB2 and that these cells have changed their distributions. As a conclusion, our data indicate the existence of a mechanism of control exercised by the early-generated neurons in the cerebral cortex on the fate of the progenitors involved in the generation of the following cortical neurons. This mechanism could help to control the number of neurons in different layers and contribute to the establishment of different cortical areas

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Corrosion is an important phenomenon that frequently occurs in the oil industry, causing surface ablation, such as it happens on the internal surfaces of oil pipes. This work aims to obtain new systems to reduce this specific problem. The surfactants SDS, CTAB, and UNITOL L90 (in micellar and microemulsionated systems) were used as corrosion inhibitors. The systems were obtained using a C/S ratio of 2, butanol as cosorfactant, kerosene as oil phase and, as water phase, NaCl solutions of 0.5M with pH = 2, 4, and 7. Microemulsion regions were found both for direct and inverse micelles. SDS had the higher microemulsion region and the area was not dependent of pH. The study of micellization of these surfactans in the liquid-gas interface was carried out via the determination of CMC from surface tension measurements. Regarding microemulsionated systems, in the case of CTAB, CMC increased when pH was increased, being constant for SDS and UNITOL L90. Concerning micellar systems, increase in pH caused decrease and increase in CMC for SDC and CTAB, respectively. In the case of UNITOL L90, CMC was practically constant, but increased for pH = 4. The microemulsionated systems presented higher CMC values, except for UNITOL L90 L90. The negative values of free energy of micellization indicated that the process of adsorption was spontaneous. The results also indicated that, comparing microemulsionated to systems, adsorption was less spontaneous in the case of SDS and CTAB, while it did not change for UNITOL L90. SAXS experiments indicated that micelle geometry was spherical, existing also as halter and flat micelles, resuting in a better inght on the adsorption at the liquid-solid interface. Efficiency of corrosion inhibition as determined by electrochemical measurements, from corrosion currents calculated from Tafel extrapolation indicuting heat showed surfactants to be efficient even at low concentrations. Equilibrium isotherm data were fitted to the Freundlich model, indicating that surfactant adsorption occurs in the form of multilayers