7 resultados para ATOMIC ABSORPTION SPECTROMETRY

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tamoxifen (TX), a drug used in the treatment of breast cancer, may cause hepatic changes in some patients. The consequences of its use on the liver tissues of rats with or without diabetes mellitus (DM) have not been fully explored. The purpose of this multidisciplinary study was to evaluate the correlation between plasma hepatic enzyme levels and the presence of iron overload in the hepatic tissue of female Wistar rats with or without streptozotocin-induced DM and using TX. Female rats were studied in control groups: C-0 (non-drug users), C-V (sorbitol vehicle only) and C-TX (using TX). DM (diabetic non-drug users) and DM-TX (diabetics using TX) were the test groups. Sixty days after induced DM, blood samples were collected for glucose, alanine aminotransferase (ALT), aspartate aminotransferase (AST) alkaline phosphatase (ALP) and bilirubin measures. Hepatic fragments were processed and stained with hematoxylin and eosin (H&E), Masson s trichrome, Perls. The hepatic iron content was quantified by atomic absorption spectrometry. AST, ALT and ALP levels were significantly elevated in the DM and DM-TX groups, with unchanged bilirubin levels. Liver iron overload using Perls stain and atomic absorption spectrometry were observed exclusively in groups C-TX and DM-TX. There was positive correlation between AST, ALT and ALP levels and microscopic hepatic siderosis intensity in group DM-TX. In conclusion, TX administration is associated with liver siderosis in diabetic and non-diabetic rats. In addition, TX induced liver iron overload with unaltered hepatic function in 2 non-diabetic rats and may be a useful tool for investigating the biological control of iron metabolism

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed builds reference values for copper and zinc, of healthy adults in Natal-RN, and to identify the influence of the gender, age, body mass index (BMI) and diet, on those values. They were assessed 123 healthy students of the Universidade Federal do Rio Grande do Norte (UFRN), both genders, with age between 19 and 41 years. The project was approved by the Ethics Committee in Research of UFRN. BMI was determined and the food consume was accomplished through a 24h recordatory. Dietary was evaluated as the energy, macronutrients, copper and zinc, according to the recommendations of National Academy of Sciences (2001; 2002). Analyses of the copper and zinc concentrations in the plasma and erythrocytes were accomplished by flame atomic absorption spectrometry. The casuistic came quite homogeneous as for the distribution for gender and age, being the largest number of individuals between the 19 and 24 years old. Most of the volunteers presented anthropometric nutritional state inside of the normality patterns. Chronic diseases family antecedents and sedentarysm were observed. Diet was characterized with low consumption of zinc, appropriate of copper and of lipids. Average concentrations of plasma copper (p=0,002), erythrocyte copper (μg/dL, p=0,036; μg/gHb, p=0,038), and plasma zinc (p=0,022) were different among the genders, what was demonstrated by the largest values of copper in the female gender and larger of zinc in the masculine. Plasma copper values still suffered interference of the variables: energy, carbohydrate and copper consumption, all classified in agreement with the median, besides the protein classified according to the percentage contribution for the dietary total energy. The study allowed to establish reference values for erythrocyte zinc (1.261,6-1.344,0 μg/dL e 51,0-54,3 μg/gHb) and to suggest "indicative" of reference values for plasma (108,4 130,2 μg/dL) and erythrocyte (female = 85,0 91,4 μg/dL; masculine = 80,2 86,5 μg/dL) copper and plasma zinc (female = 98,8 105,8 μg/dL; masculine = 104,6 111,6 μg/dL)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of a promising alternative for the treatment of produced water from the oil industry envisaging its reuse was the focus of this work. Millions of liters of water are generated per day, containing heavy metals in low concentrations (< 0,15 mg/L for Pb, <0,04 mg/L for Cd, <0,04 mg/L for Ni). The technology applied to extract these metals from aqueous phase was the solvent extraction and the extratants used were vegetable oils originated from coconut oil. They can be used in natural form or as derivatives, known as MAC - Mixture of Carboxílics Acids. The determination of the heavy metal con¬centrations in a complex matrix was made by using the atomic absorption spectrometry technique (AAS). On the bench tests using synthetics aqueous solutions containing metals, vegetable oils showed no power to extract the metals studied. The extractant MAC was selective for the Pb> Cd> Ni, in the concentration of 8% in the same organic phase. In this condition, the lower efficiency of extraction obtained was 92% for the Pb, 69% for the Cd, in the range of pH ranging from 6 to 8. An experimental planning was conducted for continuous tests. The device used was called MDIF Misturador-Decantador à Inversão de Fases and the aqueous phase was produced water from Pólo Indutrial de Guamaré/RN . No correlation between the studied variables (concentration of metal, concentration of extratant and agitation in the mixing chamer) could be obtained, because of possible factors which occurred as: variation in the composition of the studied sample, phenomena of precipitation and complexation of metals in the reservoir of feed, solubility of extratant

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The accelerated growth of urban regions have produced relevant effects on water resources. Urban regions need an adequate institutional structure that can be able to face environmental demands and the adverse effects of land use on water resources. This study aims at analysing land use effects on heavy metals concentration in sediments and water, as well as making a comparative analysis involving water physical-chemical parameters. Applied methodology included both in loco water parameters measurement and water and bed sediment sampling at 8 sections along the fluvial system. Sample analysis was performed in laboratory in order to measure heavy metal concentrations. It was measured metal concentrations of Al, Cu, Pb, Cd, Fe, Ni and Zn. Once the samples were subjected to acid digestion (method 3050B), concentration values were measured by using atomic absorption spectrometry by flame (ICP-FLAA). The analysis results were compared with normative reference, these standards is intended to assess the risks of toxic substances in sediment and water management programs. The normative reference used in this work were: a) Ontario Ministry of the Environment and Energy (OMEE, 1993) b) Normative Netherlands (VROM, 2000); c) Normative Canadian (CCME, 1999); d) United States Environmental Protection Agency (USEPA, 1977), e) CONAMA Resolution No. 344/2004; f) CONAMA Resolution No. 357/2005. The high concentrations of iron (38,750 mg.g-1), Lead (1100 mg.g-1), Nickel (100 μg.g-1) and zinc (180 μg.g-1) detected sediments confirm the state of degradation of the aquatic system. Iron concentrations (1.08 mg.L-1), Aluminum (0.6 mg.L-1) and phosphorus (0.05 mg.L-1) present in the water are outside the established standards for human consumption

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work the organosilanes aminopropyltriethoxysilane, 3-mercaptopropyltryethoxisilane and n[-3-(trimetoxisilyl)propyl]ethylenetriamine, as well as tetraethylortosilicate (TEOS), were employed to produce, by sol-gel method, organofuncionalized silicon samples. The prepared samples were characterized by elementar analys by thermogravimetry and infrared spectroscopy. Those samples were employed to adsorb Cd2+, Pb2+, Ni2+ and Zn2+ from aqueous solutions (10, 20, 40, 60 and 80 mg L-1). In typical experiments, 50 mg of the organometrix was suspended in 20 mL of metal cation solutions at four different contact times: 30, 60, 90 and 120 minutes. The total amount of adsorbed cations were measured by atomic absorption spectrometry. To all investigated matrices, the following adsorption capacity was observed: Ni2+ > Zn2+ > Cd2+ > Pb2+. Such sequence is closely related with the cation radius, as well as the cation hardness

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proposal of this work is to evaluate the influence of the organic matter on the results of the analyses of the metals (Zn, Pb, Al, Cu, Cr, Fe, Cd e Ni) for Atomic Absorption Spectrometry (AAS), so much in the extraction stage as in the reading using for that the chemometrics. They were used for this study sample of bottom sediment collected in river Jundiaí in the vicinity of the city of Macaíba-RN, commercial humus and water of the station of treatment of sewer of UFRN. Through the analyses accomplished by EAA it was verified that the interference of the organic matter happens in the extraction stage and not in the reading. With relationship to the technique of X Ray Fluorescence Spectrometry (XRFS), the present work has as intended to evaluate the viability of this technique for quantitative analysis of trace metals (Cr, Ni, Cu, Zn, Rb, Sr and Pb) in having leached obtained starting from the extraction with acqua regia for an aqueous solution. The used samples constitute the fine fraction (<0.063 mm) of sediments of swamp of the river Jundiaí. The preparation of tablets pressed starting from the dry residue of those leached it allowed your analysis in the solid form. This preliminary study shows that, in the case of the digestion chemistry partially of the fine fractions of bottom sediments used for environmental studies, the technique of applied EFRX to the analysis of dry residues starting from having leached with acqua regia, compared her it analyzes of the leached with ICP-OES, it presents relative mistakes for Cu, Pb, Sr and Zn below 10%

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The environmental impact due to the improper disposal of metal-bearing industrial effluents imposes the need of wastewater treatment, since heavy metals are nonbiodegradable and hazardous substances that may cause undesirable effects to humans and the environment. The use of microemulsion systems for the extraction of metal ions from wastewaters is effective when it occurs in a Winsor II (WII) domain, where a microemulsion phase is in equilibrium with an aqueous phase in excess. However, the microemulsion phase formed in this system has a higher amount of active matter when compared to a WIII system (microemulsion in equilibrium with aqueous and oil phases both in excess). This was the reason to develop a comparative study to evaluate the efficiency of two-phases and three-phases microemulsion systems (WII and WIII) in the extraction of Cu+2 and Ni+2 from aqueous solutions. The systems were composed by: saponified coconut oil (SCO) as surfactant, n-Butanol as cosurfactant, kerosene as oil phase, and synthetic solutions of CuSO4.5H2O and NiSO4.6H2O, with 2 wt.% NaCl, as aqueous phase. Pseudoternary phase diagrams were obtained and the systems were characterized by using surface tension measurements, particle size determination and scanning electron microscopy (SEM). The concentrations of metal ions before and after extraction were determined by atomic absorption spectrometry. The extraction study of Cu+2 and Ni+2 in the WIII domain contributed to a better understanding of microemulsion extraction, elucidating the various behaviors presented in the literature for these systems. Furthermore, since WIII systems presented high extraction efficiencies, similar to the ones presented by Winsor II systems, they represented an economic and technological advantage in heavy metal extraction due to a small amount of surfactant and cosurfactant used in the process and also due to the formation of a reduced volume of aqueous phase, with high concentration of metal. Considering the reextraction process, it was observed that WIII system is more effective because it is performed in the oil phase, unlike reextraction in WII, which is performed in the aqueous phase. The presence of the metalsurfactant complex in the oil phase makes possible to regenerate only the surfactant present in the organic phase, and not all the surfactant in the process, as in WII system. This fact allows the reuse of the microemulsion phase in a new extraction process, reducing the costs with surfactant regeneration