13 resultados para ANTIFUNGAL
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Amphotericin B (AmB), an antifungal agent that presents a broad spectrum of activity, remains the gold standard in the antifungal therapy. However, sometimes the high level of toxicity forbids its clinical use. The aim of this work was to evaluate and compare the efficacy and toxicity in vitro of Fungizon™ (AmB-D) and two new different AmB formulations. Methods: three products were studied: Fungizon™, and two Fungizon™ /Lipofundin™ admixtures, which were diluted through two methods: in the first one, Fungizon™ was previously diluted with water for injection and then, in Lipofundin™ (AmB-DAL); the second method consisted of a primary dilution of AmB-D as a powder in the referred emulsion (AmB-DL). For the in vitro assay, two cell models were used: Red Blood Cells (RBC) from human donors and Candida tropicallis (Ct). The in vitro evaluation (K+ leakage, hemoglobin leakage and cell survival rate-CSR) was performed at four AmB concentrations (from 50 to 0.05mg.L-1). Results: The results showed that the action of AmB was not only concentration dependent, but also cellular type and vehicle kind dependent. At AmB concentrations of 50 mg.L-1, although the hemoglobin leakage for AmB-D was almost complete (99.51), for AmB-DAL and AmB-DL this value tended to zero. The p = 0.000 showed that AmB-D was significantly more hemolytic. Conclusion: The Fungizon™- Lipofundin™ admixtures seem to be the more valuable AmB carrier systems due to their best therapeutic index presented
Resumo:
Studies indicate that several components were isolated from medicinal plants, which have antibacterial, antifungal, antitumor and anti-inflammatory properties. Sepsis is characterized by a systemic inflammation which leads to the production of inflammatory mediators exacerbated by excessive activation of inflammatory cells and disseminated intravascular coagulation (DIC), in which the human neutrophil elastase plays an important role in its pathogenesis. Several epidemiological studies suggest that components of plants, especially legumes, can play a beneficial role in reducing the incidence of different cancers. A chymotrypsin inhibitor of Kunitz (Varela, 2010) was purified from seeds of Erythrina velutina (Mulungu) by fractionation with ammonium sulfate, affinity chromatography on Trypsin-Sepharose, Chymotrypsin-Sepharose and ion exchange chromatography on Resource Q 1 ml (GE Healthcare) in system FPLC / AKTA. The inhibitor, called EvCI, had a molecular mass of 17 kDa determined by SDS-PAGE. The purified protein was able to inhibit human neutrophil elastase (HNE), with an IC50 of 3.12 nM. The EvCI was able to inhibit both pathways of HNE release stimulated by PAF and fMLP (75.6% and 65% respectively). The inhibitor also inhibited leukocyte migration in septic mice about 87% and prolonged the time of coagulation and inhibition factor Xa. EvCI showed neither hemolytic activity nor cytotoxicity. EvCI showed a selective antiproliferative effect to HepG2 cell lines with IC50 of 0.5 micrograms per milliliter. These results suggest EvCI as a molecule antagonist of PAF / fMLP and a potential use in fighting inflammation related disorders, disseminated intravascular coagulation (DIC) and cancer
Resumo:
Malaria, also popularly known as maleita , intermittent fever, paludism, impaludism, third fever or fourth fever, is an acute infectious febrile disease, which, in human beings, is caused by four species: Plasmodium falciparum, P. vivax, P. malariae and P. ovale. Malaria, one of the main infectious diseases in the world, is the most important parasitoses, with 250 million annual cases and more than 1 million deaths per year, mainly in children younger than live years of age. The prophylactic and therapeutic arsenal against malaria is quite restricted, since all the antimalarials currently in use have some limitation. Many plant species belonging to several families have been tested in vivo, using the murine experimental model Plasmodium berghei or in vitro against P. falciparum, and this search has been directed toward plants with antithermal, antimalarial or antiinflammatory properties used in popular Brazilian bolk medicine. Studies assessing the biological activity of medicinal plant essential oils have revealed activities of interest, such as insecticidal, spasmolytic and antiplasmodic action. It has also been scientifically established that around 60% of essential oils have antifungal properties and that 35% exhibit antibacterial properties. In our investigation, essential oils were obtained from the species Vanillosmopsis arborea, Lippia sidoides and Croton zethneri which are found in the bioregion of Araripe-Ceará. The chemical composition of these essential oils was partially characterized and the presence of monoterpenes and sesquiterpenes. The acute toxicity of these oils was assessed in healthy mice at different doses applied on a single day and on four consecutive days, and in vitro cytotoxicity in HeLa and Raw cell lines was determined at different concentrations. The in vivo tests obtained lethal dose values of 7,1 mg/Kg (doses administered on a single day) and 1,8 mg/Kg (doses administered over four days) for 50% of the animals. In the in vitro tests, the inhibitory concentration for 50% of cell growth in Hela cell lines was 588 μg/mL (essential oil from C. zethneri after 48 h), from 340-555 μg/mL (essential oil from L. sidoides, after 24 and 48 h). The essential oil from V. arborea showed no cytotoxicity and none of the essential oils were cytotoxic in Raw cell lines. These data suggest a moderate toxicity in the essential XVIII oils under study, a finding that does not impede their testing in in vivo antimalarial assays. Was shown the antimalarial activity of the essential oils in mice infected with P. berghei was assessed. The three species showed antimalarial activity from 36%-57% for the essential oil from the stem of V. arborea; from 32%-82% for the essential oil from the leaves of L. sidoides and from 40%-70% of reduction for the essential oil from the leaves of C. zethneri. This is the first study showing evidence of antimalarial activity with these species from northeast Brazil. Further studies to isolate the active ingredients of these oils are needed to determine if a single active ingredient accounts for the antimalarial activity or if a complex integration of all the compounds present occurs, a situation reflected in their biological activity
Resumo:
Candida albicans is a diploid yeast that in some circumstances may cause oral or oropharyngeal infections. The investigation of natural products is mandatory for the discovery of new targets for antifungal drugs development. This study aimed to determine the genotypes of 48 clinical isolates of C. albicans obtained from the oral cavity of kidney transplant patients from two distinct geographic regions of Brazil. In addition, we investigated three virulence factors in vitro: phospholipase activity, morphogenesis and the ability to evade from polymorphonuclear neutrophils. The expression of these virulence factors in vitro was also investigated in the presence of the crude extract of Eugenia uniflora. The genotype A was the most prevalent (30 isolates; 62.5%), followed by genotype C (15 isolates; 31.5%) and genotype B (3 isolates; 6.25%). When microsatellite technique with primer M13 was applied, 80% of the isolates from the South were placed within the same cluster. All Genotype C strains were grouped together within two different clusters. Genotype C was considered more resistant to PMNs attack than genotypes A and B. Strains isolated from the South of Brazil showed higher ability to combat PMNs phagocytosis. We found a high rate of genotype C strains isolated from the oral cavity of this group of patients. The crude extract of E. uniflora inhibited proper hypha formation and phagocytosis by PMNs, but had no significant effect on phospholipase activity. This study characterized oral C. albicans strains isolated from kidney transplant recipients and will contribute for the better understanding of the pathogenesis and alternative therapeutics for oral candidiasis
Resumo:
The frequency of disseminated candidiasis caused by yeast has enhancing in intensive care unit. Despite the availability of new antifungal drugs, C. albicans sepsis mortality causes can be as high as 30-40%. So, it has been needed to looking for a new therapeutic medicament that helps in treatment and prevention of this infection. Previous data that demonstrated that particulated β-glucan stimulates the immune system and experiments of this work were conducted to investigating if β-glucan extracted from Saccharomices cerevisiae, could modified the evolution of mouse model C. albicans systemic infection. Balb/c mice with sepsis and β-1,3 glucan treated or not were analyzed the influence of β-1,3 glucan in survival of the animals, in the fungal burdens in kidney, in the production of urea and TNF even in the histopathology of kidney. The experiments shown that the infected animals a nd glucan treated had great survival (p<0,05), less unit form colony in kidney and normal levels of urea. In the kidney histopathology of not glucan treated animals it has seen more lesions when compared with treated animals. So we conclude that β-1,3 glucan could stimulate the immune system against disseminated C. albicans
Resumo:
The increase in the incidence of fungal infections due to the drug-resistance or to the number of patients with immune alterations such as AIDS, chemotherapy or organ transplantation, has done the research necesseray for new antifungal drugs. The species from Northeastern Brazil may become an important source of innovative natural molecules. To evaluate the antifungal activity of 10 medicinal plants from Northeastern Brazil, traditionally used as antimicrobial agents, 30 crude extracts (CE) were tested in vitro against four standard species of Candida spp. The CE most promising of these plants were evaluated against yeasts of the oral cavity of kidney transplant patients and through a bioassay-guided fractionation. The extracts form leaves of E. uniflora, the stem bark of L. ferrea and leaves of P. guajava showed significant activity against all yeasts evaluated, with MIC values between 15.62 and 62.5 μg/mL. E. uniflora also showed fungicidal properties against all yeasts, especially against Candida dubliniensis. In patients with immune systems compromised, such as transplanted, oral candidiasis manifests mainly due to immunosuppressive therapy, and resistance to conventional antifungals. The CE of E. uniflora presented range of MIC values between 1.95 to 1000 μg/mL, and lower MIC50 and MIC90 values were observed against C. non-albicans. Due the better results, the CE of E. uniflora was elected to performe the bioassay-guided fractionation. Thus it was possible to obtain enriched fractions, which showed good inhibitory ability against ATCC strains of Candida spp. It was also possible to perform experiments to verify the production of biofilm in two strains of C. dubliniensis and action of extracts and fractions on the same. With this, we observed a behavior between the yeast ATCC and clinical isolate. In addition, CE, fractions and subfractions of E. uniflora inhibit planktonic cells to preventing the growth of biofilm. The preliminary chemical characterization of the fractions obtained revealed the presence of polyphenols (especially flavonoids and tannins). Finally, the results suggests that among the plant species studied, E. uniflora showed a pattern very promising as regards the antifungal, requiring further study of purification and structural elucidation of compounds in order to verify that the antifungal effect found can be attributed to a specific compound or some mechanism depends on synergistic the mixture of polyphenols
Resumo:
In Brazil, there is a high incidence of venomous animals. Among them, scorpions are highlighted by their medical importance, and for being their venom a source of several molecules with biological and pharmacological activity not yet fully understood, including several bioactive peptides. Antimicrobial peptides (AMPs) are components of the immune system in prokaryotes and eukaryotes, used in the first line of defense against microorganisms. In the present study, we characterized the first PAM previously identified through transcriptome of the venom gland of the scorpion Tityus stigmurus, named Stigmurin. The characteristics of Stigmurin were investigated by computational modeling and construction of dendrogram. In vitro tests investigated the antibacterial, antifungal, haemolytic and cytotoxic effects of crude venom and Stigmurin. In addition, the structural characteristics of Stigmurin were investigated by circular dochroism in water, 2, 2 , 2- trifluoethanol (TFE) and sodium dodecyl sulfate (SDS) and the models were refined by molecular dynamics simulations. The results showed that the selected sequence encodes a mature protein of 17 amino acid residues and the dendrogram reveals a case of convergent evolution. The crude venom showed no antimicrobial activity, however, Stigmurin exhibited a broad spectrum of antibacterial activity, with minimal inhibitory concentrations (MIC) ranging from 31.25 and 250 µg/mL for different strains, while the hemolytic activity at these concentrations was low. In cytotoxicity studies, the crude venom was unable to reduce cell viability in VERO E6 cells; in contrast, its activity in SiHa cells was significantly higher, corresponding to IC50 of 3.6 µg/mL. For Stigmurin the concentration sable to decrease cell viability of Vero E6 and SiHa cells in 50% were 275.67 µg/mL and 212.54 µg/mL, respectively. The dichroism spectra revealed the conformational flexibility, with predominating extended and β–sheet structures, as well as a remark able renaturation ability. The results suggest that Stigmurin could be considered as a potential antiinfective drug
Resumo:
Several studies have been developed regarding health risks associated with the recreational use of beaches contaminated with domestic sewage. These wastes contain various microorganisms, including Candida tropicalis, etiologic agent of both superficial infections such as systemic, as well as indicator of fecal contamination for the environment. In this context, the objective of this study was to characterize C. tropicalis isolates from the sandy beach of Ponta Negra, Natal, Rio Grande do Norte, Brazil, regarding the expression of in vitro virulence factors, adaptation to osmotic stress and susceptibility to antifungal drugs. We analyzed 62 environmental isolates of C. tropicalis and observed a great variation between them for the various virulence factors evaluated. In general, environmental isolates were more adherent to CEBH than C. tropicalis ATCC13803 reference strain, besides the fact they were also highly biofilm producers. In relation to morphogenesis, most isolates presented wrinkled phenotype in Spider medium (34 isolates, 54.8 %). When assessing enzyme activity, most isolates had higher proteinase production than C. tropicalis ATCC13803 reference strain. In addition, 35 isolates (56.4 %) had high hemolytic activity (hemolysis index > 55). With regard to C. tropicalis resistance to osmotic stress, 85.4% of the isolates were able to grow in a liquid medium containing 15% sodium chloride, corroborating to high survival capacity described for this yeast at marine environment. Finally, with regard to sensitivity to antifungal drugs, it was observed high resistance to the azoles tested, with the occurrence of the "Low-high" phenomenon and similar effect to the paradoxical growth which occurs to the echinocandins. For the three azoles tested we verified that 15 strains were resistant (24.2 %). Some strains were also resistant to amphotericin B (14 isolates, 22.6 %), while all of them were sensitive for the echinocandins tested. Therefore, our results demonstrate that C. tropicalis isolated from the sand of northeast of Brazil can fully express virulence attributes and showed a high persistence capacity on the coastal environment, in addition of being significantly resistant to most applied antifungals in current clinical practice. This constitutes a potential health risk to visitors of this environment, especially immunocompromised individuals and those with extreme age range.
Resumo:
Candidiasis is a major oral manifestation in kidney transplant patients. Candida spp. possess essential virulence factors which contribute for the infectious process, including the ability to adhere to epithelial cells and biofilm formation. The extract obtained from the leaves of Eugenia uniflora [acetone: water (7:3, v/v)] has demonstrated antifungal activity against Candida spp. This study evaluated the influence of the extract of E. uniflora in adhesion to human buccal epithelial cells (HBEC) and biofilm formation of 42 strains of Candida spp. isolated from the oral cavity of kidney transplant patients. Candida spp. strains belonging to a culture collection were reactivated and phenotypically re-identified by classical and molecular methods (genotyping ABC and RAPD), when necessary, to complete the identification to the species level. For the virulence tests evaluated in vitro, yeasts were grown in the presence and absence of 1000 g/mL of the extract. A ratio of 10: 1 (Candida spp. cells x HBECs) was incubated for 1 hour at 37 ° C, 200 rpm, fixed with 10% formalin and the number of Candida cells adhered to 150 HBEC determined by optical microscope. Biofilms were formed on polystyrene microplates in the presence or absence of the extract. The quantification was performed with crystal violet staining at 570 nm. All isolates were viable and exhibited phenotypic characteristics suggestive of each species identified. Two strains presumptively identified as Candida dubliniensis belonged to this species as determined with genotyping ABC, while strains identified as belonging to the Candida parapsilosis species complex were differentiated by RAPD genotyping. Candida albicans was found to be the most adherent species to the buccal epithelia, while C. tropicalis showed remarkable biofilm formation.We could detect that the extract of E. uniflora was able to reduce adhesion to HBEC for both Candida albicans and non-Candida albicans Candida species. On the other hand, only 16 Candida spp. strains (36 %) showed reduced biofilm formation. However, two highly biofilm producer strains of C. tropicalis had an expressive reduction in biofilm formation. This study reinforces the idea that besides growth inhibition, E. uniflora may interfere with the expression of some virulence factors of Candida spp., and may be possibly applied in the future as a novel antifungal agent.
Resumo:
The inefficiency of chemical pesticides to control phytopathogenic fungi in agriculture and the frequent incidence of human diseases caused by bacteria which are resistant to antibiotics lead to the search for alternative antimicrobial compounds. In this context, plant defensins are a promising tool for the control of both plant and human pathogenic agents. Plant defensins are cationic peptides of about 50 amino acid residues, rich in cysteine and whose tridimensional structure is considerably conserved among different plant species. These antimicrobial molecules represent an important innate component from plant defense response against pathogens and are expressed in various plant tissues, such as leaves, tubers, flowers, pods and seeds. The present work aimed at the evaluation of the antimicrobial activity of two plant defensins against different phytopathogenic fungi and pathogenic bacteria to humans. The defensin Drr230a, whose gene was isolated from pea (Pisum sativum), and the defensin CD1,whose gene was identified within coffee (Coffea arabica) transcriptome, were subcloned in yeast expression vector and expressed in Pichia pastoris. The gene cd1 was subcloned as two different recombinant forms: CD1tC, containing a six-histidine sequence (6xHis) at the peptide C-terminal region and CD1tN, containing 6xHis coding sequence at the N-terminal region. In the case of the defensin Drr230a, the 6xHis coding sequence was inserted only at the N-terminal region. Assays of the antimicrobial activity of the purified recombinant proteins rDrr230a and rCD1 against Phakopsora pachyrhizi, causal agent of soybean Asian rust, were performed to analyze the in vitro spore germination inhibition and disease severity caused by the fungus in planta. Both recombinant defensins were able to inhibit P. pachyrhizi uredospore germination, with no difference between the antimicrobial action of either CD1tC or CD1tN. Moreover, rDrr230a and rCD1 drastically reduced severity of soybean Asian rust, as demonstrated by in planta assays. In spite of the fact that rCD1 was not able to inhibit proliferation of the human pathogenic bacteria Staplylococcus aureus and Klebsiella pneumoniae, rCD1 was able to inhibit growth of the phytopathogenic fungus Fusarium tucumaniae, that causes soybean sudden death syndrome. The obtained results show that these plant defensins are useful candidates to be used in plant genetic engineering programs to control agriculture impacting fungal diseases.
Resumo:
Amphotericin B (AmB), an antifungal agent that presents a broad spectrum of activity, remains the gold standard in the antifungal therapy. However, sometimes the high level of toxicity forbids its clinical use. The aim of this work was to evaluate and compare the efficacy and toxicity in vitro of Fungizon™ (AmB-D) and two new different AmB formulations. Methods: three products were studied: Fungizon™, and two Fungizon™ /Lipofundin™ admixtures, which were diluted through two methods: in the first one, Fungizon™ was previously diluted with water for injection and then, in Lipofundin™ (AmB-DAL); the second method consisted of a primary dilution of AmB-D as a powder in the referred emulsion (AmB-DL). For the in vitro assay, two cell models were used: Red Blood Cells (RBC) from human donors and Candida tropicallis (Ct). The in vitro evaluation (K+ leakage, hemoglobin leakage and cell survival rate-CSR) was performed at four AmB concentrations (from 50 to 0.05mg.L-1). Results: The results showed that the action of AmB was not only concentration dependent, but also cellular type and vehicle kind dependent. At AmB concentrations of 50 mg.L-1, although the hemoglobin leakage for AmB-D was almost complete (99.51), for AmB-DAL and AmB-DL this value tended to zero. The p = 0.000 showed that AmB-D was significantly more hemolytic. Conclusion: The Fungizon™- Lipofundin™ admixtures seem to be the more valuable AmB carrier systems due to their best therapeutic index presented
Resumo:
Studies indicate that several components were isolated from medicinal plants, which have antibacterial, antifungal, antitumor and anti-inflammatory properties. Sepsis is characterized by a systemic inflammation which leads to the production of inflammatory mediators exacerbated by excessive activation of inflammatory cells and disseminated intravascular coagulation (DIC), in which the human neutrophil elastase plays an important role in its pathogenesis. Several epidemiological studies suggest that components of plants, especially legumes, can play a beneficial role in reducing the incidence of different cancers. A chymotrypsin inhibitor of Kunitz (Varela, 2010) was purified from seeds of Erythrina velutina (Mulungu) by fractionation with ammonium sulfate, affinity chromatography on Trypsin-Sepharose, Chymotrypsin-Sepharose and ion exchange chromatography on Resource Q 1 ml (GE Healthcare) in system FPLC / AKTA. The inhibitor, called EvCI, had a molecular mass of 17 kDa determined by SDS-PAGE. The purified protein was able to inhibit human neutrophil elastase (HNE), with an IC50 of 3.12 nM. The EvCI was able to inhibit both pathways of HNE release stimulated by PAF and fMLP (75.6% and 65% respectively). The inhibitor also inhibited leukocyte migration in septic mice about 87% and prolonged the time of coagulation and inhibition factor Xa. EvCI showed neither hemolytic activity nor cytotoxicity. EvCI showed a selective antiproliferative effect to HepG2 cell lines with IC50 of 0.5 micrograms per milliliter. These results suggest EvCI as a molecule antagonist of PAF / fMLP and a potential use in fighting inflammation related disorders, disseminated intravascular coagulation (DIC) and cancer
Resumo:
Malaria, also popularly known as maleita , intermittent fever, paludism, impaludism, third fever or fourth fever, is an acute infectious febrile disease, which, in human beings, is caused by four species: Plasmodium falciparum, P. vivax, P. malariae and P. ovale. Malaria, one of the main infectious diseases in the world, is the most important parasitoses, with 250 million annual cases and more than 1 million deaths per year, mainly in children younger than live years of age. The prophylactic and therapeutic arsenal against malaria is quite restricted, since all the antimalarials currently in use have some limitation. Many plant species belonging to several families have been tested in vivo, using the murine experimental model Plasmodium berghei or in vitro against P. falciparum, and this search has been directed toward plants with antithermal, antimalarial or antiinflammatory properties used in popular Brazilian bolk medicine. Studies assessing the biological activity of medicinal plant essential oils have revealed activities of interest, such as insecticidal, spasmolytic and antiplasmodic action. It has also been scientifically established that around 60% of essential oils have antifungal properties and that 35% exhibit antibacterial properties. In our investigation, essential oils were obtained from the species Vanillosmopsis arborea, Lippia sidoides and Croton zethneri which are found in the bioregion of Araripe-Ceará. The chemical composition of these essential oils was partially characterized and the presence of monoterpenes and sesquiterpenes. The acute toxicity of these oils was assessed in healthy mice at different doses applied on a single day and on four consecutive days, and in vitro cytotoxicity in HeLa and Raw cell lines was determined at different concentrations. The in vivo tests obtained lethal dose values of 7,1 mg/Kg (doses administered on a single day) and 1,8 mg/Kg (doses administered over four days) for 50% of the animals. In the in vitro tests, the inhibitory concentration for 50% of cell growth in Hela cell lines was 588 μg/mL (essential oil from C. zethneri after 48 h), from 340-555 μg/mL (essential oil from L. sidoides, after 24 and 48 h). The essential oil from V. arborea showed no cytotoxicity and none of the essential oils were cytotoxic in Raw cell lines. These data suggest a moderate toxicity in the essential XVIII oils under study, a finding that does not impede their testing in in vivo antimalarial assays. Was shown the antimalarial activity of the essential oils in mice infected with P. berghei was assessed. The three species showed antimalarial activity from 36%-57% for the essential oil from the stem of V. arborea; from 32%-82% for the essential oil from the leaves of L. sidoides and from 40%-70% of reduction for the essential oil from the leaves of C. zethneri. This is the first study showing evidence of antimalarial activity with these species from northeast Brazil. Further studies to isolate the active ingredients of these oils are needed to determine if a single active ingredient accounts for the antimalarial activity or if a complex integration of all the compounds present occurs, a situation reflected in their biological activity