3 resultados para AMIDO-CYCLOPENTADIENYL LIGAND

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The natural raw materials acquired special importance beside the mineral raw materials with the need for using alternative sources to oil, because they can be used to produce biopolymers. Gelatin, produced from the denaturation of collagen, and starch, an abundant polysaccharide in various plants, are examples of biopolymers which have several technological applications, especially in films. The objective of this work is to produce polymeric bioblends with gelatin and corn starch using two types of gelatin: commercial bovine gelatin and gelatin produced from mechanically separated flesh of tilapia (Oreochromis niloticus). For the extraction of tilapia gelatin 3 distinct pretreatments, followed by extraction in distilled water under heating were performed. The properties of gelatin extracted were similar to bovine gelatin, and the differences can be explained by the difference in extraction processes and sources. Blends of commercial gelatin and starch were produced in an internal mixer from a Haake torque rheometer, to study the behavior of the gelatin mixture with starch, thus, the same compositions were processed by twin screw extrusion, to define the mixing parameters. Subsequently, the extrusion of blends of tilapia gelatin and corn starch was carried out in the same twin screw extruder. The physico-chemical, rheological and morphological properties of the blends with thermoplastic starch and gelatin were studied. It was found that various properties vary linearly with increasing concentration of the components. The blends produced are immiscible, and among the two gelatins, tilapia gelatin showed a better interfacial adhesion with the corn starch. Regarding the morphology, gelatins formed the dispersed phase in all compositions studied, even in compositions rich in starch. Can be concluded that the procedure for tilapia gelatin extraction is feasible and advantageous, and the increasing in its scale to a reactor of 30 liters is possible, with a satisfactory yield. The bioblends of bovine gelatin/corn starch and tilapia gelatin/corn starch were successfully produced, and the processing conditions were appropriate

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is a study of coordination compounds by quantum theory of atoms in molecules (QTAIM), based on the topological analysis of the electron density of molecular systems, both theoretically and experimentally obtained. The coordination chemistry topics which were studied are the chelate effect, bent titanocene and chemical bond in coordination complexes. The chelate effect was investigated according to topological and thermodynamic parameters. The exchange of monodentate ligands on polydentate ligands from same transition metal increases the stability of the complex both from entropy and enthalpy contributions. In some cases, the latter had a higher contribution to the stability of the complex in comparison with entropy. This enthalpic contribution is explained according to topological analysis of the M-ligand bonds where polidentate complex had higher values of electron density of bond critical point, Laplacian of electron density of bond critical point and delocalization index (number of shared electrons between two atoms). In the second chapter, was studied bent titanocenes with bulky cyclopentadienyl derivative π-ligand. The topological study showed the presence of secondary interactions between the atoms of π-ligands or between atoms of π-ligand and -ligand. It was found that, in the case of titanocenes with small difference in point group symmetry and with bulky ligands, there was an nearly linear relationship between stability and delocalization index involving the ring carbon atoms (Cp) and the titanium. However, the titanocene stability is not only related to the interaction between Ti and C atoms of Cp ring, but secondary interactions also play important role on the stability of voluminous titanocenes. The third chapter deals with the chemical bond in coordination compounds by means of QTAIM. The quantum theory of atoms in molecules so far classifies bonds and chemical interactions in two categories: closed shell interaction (ionic bond, hydrogen bond, van der Waals interaction, etc) and shared interaction (covalent bond). Based on topological parameters such as electron density, Laplacian of electron density, delocalization index, among others, was classified the chemical bond in coordination compounds as an intermediate between closed shell and shared interactions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The natural raw materials acquired special importance beside the mineral raw materials with the need for using alternative sources to oil, because they can be used to produce biopolymers. Gelatin, produced from the denaturation of collagen, and starch, an abundant polysaccharide in various plants, are examples of biopolymers which have several technological applications, especially in films. The objective of this work is to produce polymeric bioblends with gelatin and corn starch using two types of gelatin: commercial bovine gelatin and gelatin produced from mechanically separated flesh of tilapia (Oreochromis niloticus). For the extraction of tilapia gelatin 3 distinct pretreatments, followed by extraction in distilled water under heating were performed. The properties of gelatin extracted were similar to bovine gelatin, and the differences can be explained by the difference in extraction processes and sources. Blends of commercial gelatin and starch were produced in an internal mixer from a Haake torque rheometer, to study the behavior of the gelatin mixture with starch, thus, the same compositions were processed by twin screw extrusion, to define the mixing parameters. Subsequently, the extrusion of blends of tilapia gelatin and corn starch was carried out in the same twin screw extruder. The physico-chemical, rheological and morphological properties of the blends with thermoplastic starch and gelatin were studied. It was found that various properties vary linearly with increasing concentration of the components. The blends produced are immiscible, and among the two gelatins, tilapia gelatin showed a better interfacial adhesion with the corn starch. Regarding the morphology, gelatins formed the dispersed phase in all compositions studied, even in compositions rich in starch. Can be concluded that the procedure for tilapia gelatin extraction is feasible and advantageous, and the increasing in its scale to a reactor of 30 liters is possible, with a satisfactory yield. The bioblends of bovine gelatin/corn starch and tilapia gelatin/corn starch were successfully produced, and the processing conditions were appropriate