13 resultados para ALGINATE BEADS

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The alginic acid or alginates are acidic polysaccharides found in brown seaweed widely used in food, cosmetic, medical and pharmaceutical industry. This paper proposes the extraction, chemical characterization and verification of the pharmacological activities of brown seaweed variegata Lobophora . The alginate was extracted from the seaweed Lobophora variegata and part was sulphated for comparative purposes. The native extract showed 42% total sugar, 65% uronic acid, 0,36 % protein and 0% of sulfate, while the sulfate showed 39% , 60%, 0.36% and 27,92 % respectively. The presence of a sulfate group may be observed by the metachromasia with toluidine blue in electrophoresis system and characteristic vibration 1262,34 cm-1 in infrared spectroscopy connections assigned to S = O. We observed the formation of films and beads of native alginate, where more concentrated solution 6% resulted in a thicker and more consistent film. Native alginate showed proliferative activity at concentrations (25 and 50 mcg), (50 mg) and (100 mg) in 3T3 cell line in 24h, 48h and 72h, respectively , as the sulfated (100 mg) in 24 . Also showed antiproliferative or cytotoxic activity in HeLa cells of strain, (25 and 100 mg), (25 and 100 mg) and (25, 50 and 100 mg), to native, now for the sulfate concentrations (100 mg) in 24 (25, 50 and 100 mg) in 48 hours, and (50 and 100 mg ) 72h. For their antioxidant activity, the sulfated alginates have better total antioxidant activity reaching 29 % of the native activity while 7.5 % of activity . For the hydroxyl radical AS showed high inhibition ( between 77-83 % ) in concentrations, but the AN surpassed these numbers in the order of 78-92 % inhibition. The reducing power of AN and AS ranged between 39-82 % . In the method of ferric chelation NA reached 100 % chelating while the AS remained at a plateau oscillating 6.5%. However, in this study , we found alginates with promising pharmacological activities, to use in various industries as an antioxidant / anti-tumor compound

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The alginic acid or alginates are acidic polysaccharides found in brown seaweed widely used in food, cosmetic, medical and pharmaceutical industry. This paper proposes the extraction, chemical characterization and verification of the pharmacological activities of brown seaweed variegata Lobophora . The alginate was extracted from the seaweed Lobophora variegata and part was sulphated for comparative purposes. The native extract showed 42% total sugar, 65% uronic acid, 0,36 % protein and 0% of sulfate, while the sulfate showed 39% , 60%, 0.36% and 27,92 % respectively. The presence of a sulfate group may be observed by the metachromasia with toluidine blue in electrophoresis system and characteristic vibration 1262,34 cm-1 in infrared spectroscopy connections assigned to S = O. We observed the formation of films and beads of native alginate, where more concentrated solution 6% resulted in a thicker and more consistent film. Native alginate showed proliferative activity at concentrations (25 and 50 mcg), (50 mg) and (100 mg) in 3T3 cell line in 24h, 48h and 72h, respectively , as the sulfated (100 mg) in 24 . Also showed antiproliferative or cytotoxic activity in HeLa cells of strain, (25 and 100 mg), (25 and 100 mg) and (25, 50 and 100 mg), to native, now for the sulfate concentrations (100 mg) in 24 (25, 50 and 100 mg) in 48 hours, and (50 and 100 mg ) 72h. For their antioxidant activity, the sulfated alginates have better total antioxidant activity reaching 29 % of the native activity while 7.5 % of activity . For the hydroxyl radical AS showed high inhibition ( between 77-83 % ) in concentrations, but the AN surpassed these numbers in the order of 78-92 % inhibition. The reducing power of AN and AS ranged between 39-82 % . In the method of ferric chelation NA reached 100 % chelating while the AS remained at a plateau oscillating 6.5%. However, in this study , we found alginates with promising pharmacological activities, to use in various industries as an antioxidant / anti-tumor compound

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Expanded Bed Adsorption (EBA) is an integrative process that combines concepts of chromatography and fluidization of solids. The many parameters involved and their synergistic effects complicate the optimization of the process. Fortunately, some mathematical tools have been developed in order to guide the investigation of the EBA system. In this work the application of experimental design, phenomenological modeling and artificial neural networks (ANN) in understanding chitosanases adsorption on ion exchange resin Streamline® DEAE have been investigated. The strain Paenibacillus ehimensis NRRL B-23118 was used for chitosanase production. EBA experiments were carried out using a column of 2.6 cm inner diameter with 30.0 cm in height that was coupled to a peristaltic pump. At the bottom of the column there was a distributor of glass beads having a height of 3.0 cm. Assays for residence time distribution (RTD) revelead a high degree of mixing, however, the Richardson-Zaki coefficients showed that the column was on the threshold of stability. Isotherm models fitted the adsorption equilibrium data in the presence of lyotropic salts. The results of experiment design indicated that the ionic strength and superficial velocity are important to the recovery and purity of chitosanases. The molecular mass of the two chitosanases were approximately 23 kDa and 52 kDa as estimated by SDS-PAGE. The phenomenological modeling was aimed to describe the operations in batch and column chromatography. The simulations were performed in Microsoft Visual Studio. The kinetic rate constant model set to kinetic curves efficiently under conditions of initial enzyme activity 0.232, 0.142 e 0.079 UA/mL. The simulated breakthrough curves showed some differences with experimental data, especially regarding the slope. Sensitivity tests of the model on the surface velocity, axial dispersion and initial concentration showed agreement with the literature. The neural network was constructed in MATLAB and Neural Network Toolbox. The cross-validation was used to improve the ability of generalization. The parameters of ANN were improved to obtain the settings 6-6 (enzyme activity) and 9-6 (total protein), as well as tansig transfer function and Levenberg-Marquardt training algorithm. The neural Carlos Eduardo de Araújo Padilha dezembro/2013 9 networks simulations, including all the steps of cycle, showed good agreement with experimental data, with a correlation coefficient of approximately 0.974. The effects of input variables on profiles of the stages of loading, washing and elution were consistent with the literature

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic venous disease (CVD) is evident among the chronic diseases and affects the elderly population and primarily is responsible for leg ulcers in this population. The use of dressings in the care of a venous ulcer is a fundamental part of the treatment for healing, however, evidence to assist in choosing the best dressing is scarce. The main objective of this study was to evaluate the effectiveness of treatment with hydrogel in the healing of venous ulcers using search methods, synthesis of information and statistical research through a systematic review and meta-analysis. Randomized controlled trials were selected in the following databases: CENTRAL; DARE; NHS EED; MEDLINE; EMBASE; CINAHL. Beyond these databases three websites were consulted to identify ongoing studies: ClinicalTrials.gov, OMS ICTRP e ISRCTN. The primary outcomes were analyzed: complete wound healing, incidence of wound infection and the secondary were: changes in ulcer size, time to ulcer healing, recurrence of ulcer, quality of life of participants, pain and costs of treatment. Four studies are currently included in the review with a total of 250 participants. The use of hydrogel appears to be superior to conventional dressing, gauze soaked in saline, for the healing of venous leg ulcers; 16/30 patients showed complete healing of ulcers (RR 5,33, 95%CI [1,73,16,42]). The alginate gel was shown to be more effective when compared to the hydrogel dressing in reduction of the wound area; 61,2% (± 26,2%) with alginate e 19,4% (± 24,3%) with hydrogel at the end of four weeks of treatment. Manuka honey has shown to be similar to the hydrogel dressings in percentage of area reduction. This review demonstrated that there is no evidence available about the effectiveness of the hydrogel compared to other types of dressings on the healing of venous leg ulcers of the lower limbs, thus demonstrating the need of future studies to assist health professionals in choosing the correct dressing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The underground natural gas found associated or not with oil is characterized by a mixture of hydrocarbons and residual components such as carbon dioxide (CO2), nitrogen gas (N2) and hydrogen sulfide (H2S), called contaminants. The H2S especially promotes itself as a contaminant of natural gas to be associated with corrosion of pipelines, to human toxicity and final applications of Natural Gas (NG). The sulfur present in the GN must be fully or partially removed in order to meet the market specifications, security, transport or further processing. There are distinct and varied methods of desulfurization of natural gas processing units used in Natural Gas (UPGN). In order to solve these problems have for example the caustic washing, absorption, the use of membranes and adsorption processes is costly and great expenditure of energy. Arises on such findings, the need for research to active processes of economic feasibility and efficiency. This work promoted the study of the adsorption of sulfide gas in polymer matrices hydrogen pure and modified. The substrates of Poly(vinyl chloride) (PVC), poly(methyl methacrylate) (PMMA) and sodium alginate (NaALG) were coated with vanadyl phosphate compounds (VOPO4.2H2O), vanadium pentoxide (V2O5), rhodamine B (C28H31N2O3Cl) and ions Co2+ and Cu2+, aiming to the adsorption of hydrogen sulfide gas (H2S). The adsorption tests were through a continuous flow of H2S in a column system (fixed bed reactor) adsorption on a laboratory scale. The techniques used to characterize the adsorbents were Infrared spectroscopy (FTIR), thermogravimetry analysis (TGA), X-ray fluorescence (XRF), the X-ray diffraction (XRD) electron microscopy (SEM). Such work indicates, the results obtained, the adsorbents modified PMMA, PVC and NaALG have a significant adsorptive capacity. The matrix that stood out and had the best adsorption capacity, was to ALG modified Co2+ with a score of 12.79 mg H2S / g matrix

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new self-sustainable film was prepared through the sol-gel modified method, previously employed in our research group; sodium alginate was used as the polymer matrix, along with plasticizer glycerol, doped with titanium dioxide (TiO2) and tungsten trioxide (WO3). By varying WO3 concentration (0,8, 1,6, 2,4 and 3,2 μmol) and keeping TiO2 concentration constant (059 mmol), it was possible to study the contribution of these oxides on the obtained films morphological and electrical properties. Self-sustainable films have analyzed by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XDR), Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and Electrochemical Impedance Spectroscopy (EIS). By the IR specters, it was possible identify the TiO2, and posteriorly WO3, addition has provided dislocation of alginate characteristics bands to smaller vibrations frequencies indicating an electrostatic interaction between the oxides and the polymer matrix. Diffractograms show predominance of the amorphous phase in the films. SEM, along with EDX, analysis revealed self-sustainable films showed surface with no cracks and relative dispersion of the oxides throughout the polymer matrix. From Impedance analysis, it was observe increasing WO3 concentration to 2,4 μmol provided a reduction of films resistive properties and consequent improvement of conductive properties

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The alginates are copolymers of 1→4-linked β-D-mannuronic acid (M) and α-Lguluronic acid (G) residues that are arranjed in a block structure along a linear chain. Titanium dioxide, TiO2, is a ceramic material and can exist in three distinct crystallography forms: anatase, brookite and rutile. composites of organic and inorganic materials have better properties than the components alone. Thus, this study aims to synthesize, characterize and analyze the composite NaAlg-TiO2 in the form of powder and film. The synthesis of composite powders was performed using the sol-gel process and obtain the composite film was performed using the slow evaporation process, then the composites were analyzed by infrared spectroscopy, fluorescence x ray, thermal analysis, attenuated total reflection (ATR), x ray diffraction and impedance spectroscopy. The X ray diffraction patterns of composite powders show that with increasing calcination temperature, there were no complete transition of rutile-anatase crystalline phase, since at all temperatures studied (300, 500, 700, 900 and 1100ºC) were observed peaks of anatase phase. Thermal analysis shows that at 400°C caused the decomposition of sodium alginate in sodium carbonate and above 600°C, we observe an exothermic peak related to the decomposition of sodium carbonate and in the presence of titanium dioxide becomes sodium titanate. The XRD results confirm the formation of sodium carbonate at 700ºC and the formation sodium titanate in the temperature range 900-1100ºC. The sodium titanate influenced the electrical properties of the material, because with increasing temperature there was a decrease in conductivity, probably due to the creation of Ti vacancies, since the sodium can induce the reduction of surface Ti4+ ions into Ti3+ species. The infrared spectra of the composites in the form of powder and film showed a small shift in the bands compared to the spectrum of pure alginate, indicating that these shifts, even small ones, have evidence of miscibility between the polymer and ceramic material

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For contain beneficial properties, aluminum alloys are gaining more importance in different industrial areas, becoming the subject of study in several academic fields. When related to welding these alloys have some peculiarities that may hinder the union, such as microscopic oxide layer present on the metal surface. The MIG welding process, also known as GMAW, has developed versions that can be effective for welding aluminum. Knowing this, for this paper, two versions of pulsed MIG (CC + and CA) were chosen to evaluate which best suits pass by filling bevel on AA5083 aluminum sheets with 8 and 12 mm thick respectively. Furthermore, two types of wire, ER5087 and ER5183 were evaluated. To evaluate the process and versions of the wires, the high-speed cameras and thermal were used to monitor the metal transfer and the thermal behavior respectively, and the metallographic analysis for macrographic view of the weld beads and non-destructive testing by radiography for observation of possible discontinuities. It was found that the technique of MIG-P CA showed better results ahead of another technique both welding conditions imposed. When connected to the wires, they showed similar results, with uniform cords and seamless

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last decades, analogue modelling has been used in geology to improve the knowledge of how geological structures are nucleated, how they grow and what are the main important points in such processes. The use of this tool in the oil industry, to help seismic interpretations and mainly to search for structural traps contributed to disseminate the use of this tool in the literature. Nowadays, physical modelling has a large field of applications, since landslide to granite emplacement along shear zones. In this work, we deal with physical modelling to study the influence of mechanical stratifications in the nucleation and development of faults and fractures in a context of orthogonal and conjugated oblique basins. To simulate a mechanical stratigraphy we used different materials, with distinct physical proprieties, such as gypsum powder, glass beads, dry clay and quartz sand. Some experiments were run along with a PIV (Particle Image Velocimetry), an instrument that shows the movement of the particles to each deformation moment. Two series of experiments were studied: i) Series MO: We tested the development of normal faults in a context of an orthogonal (to the extension direction) basin. Experiments were run taking into account the change of materials and strata thickness. Some experiments were done with sintectonic sedimentation. We registered differences in the nucleation and growth of faults in layers with different rheological behavior. The gypsum powder layer behaves in a more competent mode, which generates a great number of high angle fractures. These fractures evolve to faults that exhibit a higher dip than when they cross less competent layers, like the one of quartz sand. This competent layer exhibits faulted blocks arranged in a typical domino-style. Cataclastic breccias developed along the faults affecting the competent layers and showed different evolutional history, depending on the deforming stratigraphic sequence; ii) Series MOS2: Normal faults were analyzed in conjugated sub-basins (oblique to the extension direction) developed in a sequence with and without rheological contrast. In experiments with rheological contrast, two important grabens developed along the faulted margins differing from the subbasins with mechanical stratigraphy. Both experiments developed oblique fault systems and, in the area of sub-basins intersection, faults traces became very curved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bionanocomposites systems clay base (montmorillonite and sepiolite), layered double hidroxides and biopolymers (carboxymethylcellulose and zein) were evaluated as topical delivery systems with antibacterial activity and as oral delivery systems. For this study, neomycin, a topical antibiotic, indicated mainly for open wound infections. The drug amoxicillin, an antibiotic indicated mainly for throat infections, were also used in this study. Both antibiotics were used as model drugs. Initially, drugs were incorporated directly into the biopolymer matrix, comprising the combination of carboxymethylcellulos and zein, being conformed as movies and balls and evaluated for their antibacterial activity and controlled release simulating gastrointestinal fluids. Moreover, hybrids materials have been prepared where the neomycin drug was incorporated into the lamellar inorganic solids, such as montmorillonite by ion exchange reaction, and the fibrous type, such as sepiolite by adsorption in aqueous solution. But the drug amoxicillin was incorporated into layered double hydroxides by anion exchange and montmorillonite by cation exchange. The resulting hybrids were in turn combined with the biopolymer matrix yielding bionanocomposites shaped materials such as films were tested for their antibacterial activity, and the shaped materials beads were tested for their release in the gastrointestinal fluids. Through the analysis of various physico-chemical techniques, we observed the interactions between the studied materials, the formation of hybrids materials, obtaining the bionanocomposites materials and material efficiency when applied in controlled release of drugs both topical and use oral mainly influenced by the presence of zein, are promising as topical delivery systems and oral drugs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The maintenance of masticatory function is especially important for patients wearing complete dentures due to their limitations. Thus, the bilateral balanced occlusal concept is used to achieve greater masticatory efficiency. However, a critical review of the literature reveals that there is not sufficient scientific evidence to support bilateral balanced occlusion as the most appropriate occlusal concept in complete dentures. Therefore, the aim of this study was to evaluate the masticatory efficiency in complete dentures wearers with bilateral balanced occlusion and canine guidance. A double-blinded controlled crossover clinical trial was conducted. The sample was composed by 24 edentulous patients who wore sets of complete dentures with both occlusal concepts during equal periods of 3 months. Objective data were collected through the masticatory efficiency test performed by the colorimetric method with the beads, in which capsules of a synthetic material enclosing fuchsine-containing granules were used. Subjective data were recorded by patient's ratings of their chewing function. No significant statistical difference was found for masticatory efficiency (p=0.095) between the two occlusal concepts studied. The results suggest that bilateral balanced occlusion does not improve the masticatory efficiency in complete denture wearers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The maintenance of masticatory function is especially important for patients wearing complete dentures due to their limitations. Thus, the bilateral balanced occlusal concept is used to achieve greater masticatory efficiency. However, a critical review of the literature reveals that there is not sufficient scientific evidence to support bilateral balanced occlusion as the most appropriate occlusal concept in complete dentures. Therefore, the aim of this study was to evaluate the masticatory efficiency in complete dentures wearers with bilateral balanced occlusion and canine guidance. A double-blinded controlled crossover clinical trial was conducted. The sample was composed by 24 edentulous patients who wore sets of complete dentures with both occlusal concepts during equal periods of 3 months. Objective data were collected through the masticatory efficiency test performed by the colorimetric method with the beads, in which capsules of a synthetic material enclosing fuchsine-containing granules were used. Subjective data were recorded by patient's ratings of their chewing function. No significant statistical difference was found for masticatory efficiency (p=0.095) between the two occlusal concepts studied. The results suggest that bilateral balanced occlusion does not improve the masticatory efficiency in complete denture wearers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Marine algae are rich sources of various structural compounds which recently has been increasingly studied as a new source of bioactive substances. The alginate, as come as fucans, are considered the main acidic polysaccharides found in brown seaweed. This molecule consists a linear natural polysaccharide, non-sulfated, and presents monosaccharides: acid β-D-mannuronic (M) and α-L-guluronic acid (G); in a vast amount compositions and threads. Alginate has been widely applied in food and pharmaceutical industries because of its ability to retain water, forming films and gels as well as thickening, stabilizing and form emulsions. In this work we aimed to extract, structurally characterize, compare and analyze the possible pharmacological activities of native alginate molecule obtained from brown seaweed Dyctiopteris delicatula (DYN), and its chemically sulfated derivative (DYS). The alginate structure and composition molecule can be proven through chemical dosing, that showed low protein contamination and high sugar level, existence and separation of M and G blocks in the descending paper chromatography, infrared spectroscopy and nuclear magnetic resonance. Molecule sulfation was proven with sulphate dosage, resulting in 28.56% sulphate in molecule; electrophoresis, verify metachromasia with toluidine blue; and infrared spectroscopy, that showed a characteristic band at 1221cm-1 corresponding a sulfate group vibration. For the pharmacological activities the tests was: antioxidant activity, changes in cell function (MTT test) and anticoagulant test. In the antioxidant activity we observed that DYN showed better results in the kidnapping of hydroxyl radicals and ferric chelation compared to DYS, this had the best result in the total antioxidant capacity. Both showed similar activity in reducing power and the kidnapping radicals DPPH. In MTT test DYN and DYS had not proliferative and cytotoxic activity in fibroblast cells (3T3) and showed antiproliferative and cytotoxic activity in cancer cell lines HeLa and B16 melanoma. In anticoagulant assay DYN showed good activity in the intrinsic pathway of blood coagulation, and a small activity in the extrinsic pathway, in the other hand DYS showed only a very small activity in the extrinsic pathway, but cannot come to be regarded as an anticoagulant agent. From these results it can be concluded that the alginate was extracted and sulfated, revealing a potential compound to be used in the pharmaceutical industry as an anticoagulant agent, antioxidant and antitumor and the sulfation has not been conclusively important to performance in the tested pharmacological activities