2 resultados para ACIDIFICATION
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Milk from different animals can be used for dairy production. Yoghurt is a popular fermented milk product and considered to be one of the greatest importance in terms of consumer acceptance and consumption. The present research deals with the production of strawberry set-type yoghurt by mixing goat and buffalo s milk and it has the objective of taking advantage of the intrinsic characteristics of each milk to produce a final product with desirable attributes. It was conducted by analyzing five experimental groups with different proportions of goat and buffalo s milk: C 100% goat s milk; 7C3B - 70% goat s milk and 30% buffalo s milk, 5C5B - 50% goat s milk and 50% buffalo s milk, 3C7B 30% goat s milk and 70% buffalo s milk; B - 100% buffalo s milk. Each group was evaluated for total solids content and the acidification profile was monitored every 30 minutes by pH analysis. The yoghurt samples were analyzed for physical-chemical (pH, acidity, protein, fat, total and reducing sugars, ash and total solids), rheological (syneresis and viscosity) and sensory characteristics (appearance, odor, consistency and flavour). Samples with higher percentual of bubaline milk reached Vm faster, but the time necessary for pH 4.6 (Te) were similar between groups. Statistical differences (p<0.05) were observed for fat and total solids content of yoghurt, with superior values for groups higher proportions of buffalo s milk. The parameters of behavior reached by the model of Ostwald of Waale pointed yoghurt samples as non-Newtonian and pseudoplastic fluids. Yoghurt made only with goat s milk (C) had higher values (p<0.05) for syneresis, which can be explained by its fragile coagulum. Additionally, this group also had the lowest sensory scores for the attributes consistence and taste, while bubaline yoghurt (B) obtained the best acceptance indexes for all of the appraised parameters
Resumo:
Among the main challenges in the beer industrial production is the market supply at the lowest cost and high quality, in order to ensure the expectations of customers and. consumers The beer fermentation stage represents approximately 70% of the whole time necessary to its production, having a obligatoriness of strict process controls to avoid becoming bottleneck in beer production. This stage is responsible for the formation of a series of subproducts, which are responsible for the composition of aroma/bouquet existing in beer and some of these subproducts, if produced in larger quantities, they will confer unpleasant taste and odor to the final product. Among the subproducts formed during the fermentation stage, total vicinal diketones is the main component, since it is limiting for product transfusion to the subsequent steps, besides having a low perception threshold by the consumer and giving undesirable taste and odor. Due to the instability of main raw materials quality and also process controls during fermentation, the development of alternative forms of beer production without impacting on total fermentation time and final product quality is a great challenge to breweries. In this work, a prior acidification of the pasty yeast was carried out, utilizing for that phosphoric acid, food grade, reducing yeast pH of about 5.30 to 2.20 and altering its characteristic from flocculent to pulverulent during beer fermentation. An increase of six times was observed in amount of yeast cells in suspension in the second fermentation stage regarding to fermentations by yeast with no prior acidification. With alteration on two input variables, temperature curve and cell multiplication, which goal was to minimize the maximum values for diketones detected in the fermenter tank, a reduction was obtained from peak of formed diacetyl and consequently contributed to reduction in fermentation time and total process time. Several experiments were performed with those process changes in order to verify the influence on the total fermentation time and total vicinal diketones concentration at the end of fermentation. This experiment reached as the best production result a total fermentation time of 151 hours and total vicinal diketone concentration of 0.08 ppm. The mass of yeast in suspension in the second phase of fermentation increased from 2.45 x 106 to 16.38 x 106 cells/mL of yeast, which fact is key to a greater efficiency in reducing total vicinal diketones existing in the medium, confirming that the prior yeast acidification, as well as the control of temperature and yeast cell multiplication in fermentative process enhances the performance of diketones reduction and consequently reduce the total fermentation time with diketones concentration below the expected value (Max: 0.10 ppm)