4 resultados para ACID-RAIN STRESS

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Alpha-lipoic acid (ALA) is a potent antioxidant with favourable anti-inflammatory, metabolic and endothelial effects, and has been widely investigated due to its potential against cardiovascular risk factors. This study aimed to evaluate the effect of oral ALA supplementation on oxidative stress biomarkers, inflammation and cardiovascular risk factors in patients with hypertension. This is a double-blind placebo-controlled randomized clinical trial, where the intervention was evaluated prospectively comparing results in both groups. The sample consisted of 64 hypertensive patients who were randomly distributed into ALA group (n = 32), receiving 600 mg / day ALA for twelve weeks and control group (n = 32), receiving placebo for the same period. The following parameters were evaluated before and after intervention: lipid peroxidation, content of reduced glutathione (GSH), enzymatic activities of glutathione peroxidase (GPx) and superoxide dismustase, ultrasensitive C-reactive protein (hs-CRP), triglycerides, total cholesterol and fractions, fasting glucose and anthropometric indicators. There was a statistically significant reduction (p <0.05) in serum concentrations of total cholesterol, very low density lipoprotein (VLDL), high density lipoprotein (HDL), triglycerides and blood glucose. There was a reduction in body weight and waist, abdominal and hip circumferences in the group that received ALA. In addition, there was a statistically significant increase (p <0.05) in the contents of reduced glutathione (GSH) and glutathione peroxidase (GPx) in the group receiving ALA. Oral administration of ALA appears to be a valuable adjuvant therapy, which may contribute to decrease the damage caused by oxidative stress and other risk factors associated with the atherosclerotic process

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Natural gas, although basically composed by light hydrocarbons, also presents in its composition gaseous contaminants such as CO2 (carbon dioxide) and H2S (hydrogen sulfide). Hydrogen sulfide, which commonly occurs in oil and gas exploration and production activities, besides being among the gases that are responsible by the acid rain and greenhouse effect, can also cause serious harm to health, leading even to death, and damages to oil and natural gas pipelines. Therefore, the removal of hydrogen sulfide will significantly reduce operational costs and will result in oil with best quality to be sent to refinery, thereby resulting in economical, environmental, and social benefits. These factors highlight the need for the development and improvement of hydrogen sulfide sequestrating agents to be used in the oil industry. Nowadays there are several procedures for hydrogen sulfide removal from natural gas used by the petroleum industry. However, they produce derivatives of amines that are harmful to the distillation towers, form insoluble precipitates that cause pipe clogging and produce wastes of high environmental impact. Therefore, the obtaining of a stable system, in inorganic or organic reaction media, that is able to remove hydrogen sulfide without forming by-products that affect the quality and costs of natural gas processing, transport and distribution is of great importance. In this context, the evaluation of the kinetics of H2S removal is a valuable procedure for the treatment of natural gas and disposal of the byproducts generated by the process. This evaluation was made in an absorption column packed with Raschig ring, where natural gas with H2S passes through a stagnant solution, being the contaminant absorbed by it. The content of H2S in natural gas in column output was monitored by an H2S analyzer. The comparison between the obtained curves and the study of the involved reactions have not only allowed to determine the efficiency and mass transfer controlling step of the involved processes but also make possible to effect a more detailed kinetic study and evaluate the commercial potential of each reagent

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Acid rain is a major assault on the environment, a consequence of burning fossil fuels and industrial pollutants the basis of sulfur dioxide released into the atmosphere. The objective of this research was to monitor and analyze changes in water quality of rain in the city of Natal, seeking to investigate the influence of quality on a local, regional and global, in addition to possible effects of this quality in the local landscape. Data collection was performed from December 2005 to December 2007. We used techniques of nefanálise in identifying systems sinóticos, field research in the search for possible effects of acid rain on the landscape, and collect and analyze data of precipitation and its degree of acidity. Used descriptive statistics (standard deviation and coefficient of variation) used to monitor the behavior of chemical precipitation, and monitoring of errors in measurements of pH, level of confidence, Normalized distribution of Gauss, confidence intervals, analysis of variance ANOVA were also used. Main results presented as a variation of pH between 5,021 and 6,836, with an average standard deviation of 5,958 and 0,402, showing that the average may represent the sample. Thus, we can infer that, according to the CONAMA Resolution 357 (the index for fresh water acidity should be between 6.0 and 9.0), the precipitation of Natal / RN is slightly acidic. It appears that the intertropical convergence zone figures showed the most acidic among the systems analyzed sinóticos, taking its average value of pH of 5,617, which means an acid value now, with a standard deviation of 0,235 and the coefficient of variation of 4,183% which shows that the average may represent the sample. Already in field research and found several places that suffer strongly the action of acid rain. However, the results are original and need further investigation, including the use of new methodologies

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sulfur compounds emissions have been, on the late years, subject to more severe environmental laws due to its impact on the environment (causing the acid rain phenomena) and on human health. It has also been object of much attention from the refiners worldwide due to its relationship with equipment’s life, which is decreased by corrosion, and also with products’ quality, as the later may have its color, smell and stability altered by the presence of such compounds. Sulfur removal can be carried out by hydrotreating (HDT) which is a catalytic process. Catalysts for HDS are traditionally based on Co(Ni)-Mo(W)/Al2O3. However, in face of the increased contaminants’ content on crude oil, and stricter legislation on emissions, the development of new, more active and efficient catalysts is pressing. Carbides of refractory material have been identified as potential materials for this use. The addition of a second metal to carbides may enhance catalytic activities by increasing the density of active sites. In the present thesis Mo2C with Co addition was produced in a fixed bed reactor via gas-solid reaction of CH4 (5%) and H2(95%) with a precursor made of a mix of ammonium heptamolybdate [(NH4)6[Mo7O24].4H2O] and cobalt nitrate[Co(NO3)2.6H2O] at stoichiometric amounts. Precursors’ where analyzed by XRF, XRD, SEM and TG/DTA. Carboreduction reactions were carried out at 700 and 750°C with two cobalt compositions (2,5 and 5%). Reaction’s products were characterized by XRF, XRD, SEM, TOC, BET and laser granulometry. It was possible to obtain Mo2C with 2,5 and 5% cobalt addition as a single phase at 750°C with nanoscale crystallite sizes. At 700°C, however, both MoO2 and Mo2C phases were found by XRD. No Co containing phases were found by XRD. XRF, however, confirmed the intended Co content added. SEM images confirmed XRD data. The increase on Co content promoted a more severe agglomeration of the produced powder. The same effect was noted when the reaction temperature was increased. The powder synthesized at 750°C with 2,5% Co addition TOC analysis indicated the complete conversion from oxide material to carbide, with a 8,9% free carbon production. The powder produced at this temperature with 5% Co addition was only partially converted (86%)