4 resultados para 5G Massive MIMO SCMA F-OFDM C-RAN MATLAB IOT Small Cells mmWave Beam-Forming
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Doped lanthanum chromite ( LaCrO3 ) has been the most common material used as interconnect in solid oxide fuel cells for high temperature ( SOFC-HT ) that enabling the stack of SOFCs. The reduction of the operating temperature, to around 800 º C, of solid oxide fuel cells enabled the use of metallic interconnects as an alternative to ceramic LaCrO3, From the practical point of view, to be a strong candidate for interconnect the material must have good physical and mechanical properties such as resistance to oxidizing and reducing environments, easy manufacture and appropriate thermo-mechanical properties. Thus, a study on the physic-mechanical interconnects La0,8Sr0,2Cr0,92Co0,08O3 ceramics for SOFC -AT obtained by the method of combustion , as well as thermo-mechanical properties of metallic interconnects (AISI 444) covered with La0,8Ca0,2CrO3 by deposition technique by spray-pyrolysis fuel cells for intermediate temperature (IT-SOFCs). The La0,8Sr0,2Cr0,92Co0,08O3 was characterized by X -ray diffraction(XRD) , density and porosity , Vickers hardness (HV) , the flexural strength at room temperature and 900 °C and scanning electron microscopy (SEM). The X -ray diffraction confirmed the phase formation and LaCrO3 and CoCr2O4, in order 6 GPa hardness and mechanical strength at room temperature was 62 MPa ceramic Interconnector. The coated metal interconnects La0,8Ca0,2CrO3 passed the identification by XRD after deposition of the film after the oxidation test. The oxidative behavior showed increased resistance to oxidation of the metal substrate covered by La0,8Ca0,2CrO3 In flexural strength of the coated metal substrate, it was noticed only in the increased room temperature. The a SEM analysis proved the formation of Cr2O3 and (Cr,Mn)3O4 layers on metal substrate and confirmed the stability of the ceramic La0,8 Ca0,2CrO3 film after oxidative test
Resumo:
Doped lanthanum chromite ( LaCrO3 ) has been the most common material used as interconnect in solid oxide fuel cells for high temperature ( SOFC-HT ) that enabling the stack of SOFCs. The reduction of the operating temperature, to around 800 º C, of solid oxide fuel cells enabled the use of metallic interconnects as an alternative to ceramic LaCrO3, From the practical point of view, to be a strong candidate for interconnect the material must have good physical and mechanical properties such as resistance to oxidizing and reducing environments, easy manufacture and appropriate thermo-mechanical properties. Thus, a study on the physic-mechanical interconnects La0,8Sr0,2Cr0,92Co0,08O3 ceramics for SOFC -AT obtained by the method of combustion , as well as thermo-mechanical properties of metallic interconnects (AISI 444) covered with La0,8Ca0,2CrO3 by deposition technique by spray-pyrolysis fuel cells for intermediate temperature (IT-SOFCs). The La0,8Sr0,2Cr0,92Co0,08O3 was characterized by X -ray diffraction(XRD) , density and porosity , Vickers hardness (HV) , the flexural strength at room temperature and 900 °C and scanning electron microscopy (SEM). The X -ray diffraction confirmed the phase formation and LaCrO3 and CoCr2O4, in order 6 GPa hardness and mechanical strength at room temperature was 62 MPa ceramic Interconnector. The coated metal interconnects La0,8Ca0,2CrO3 passed the identification by XRD after deposition of the film after the oxidation test. The oxidative behavior showed increased resistance to oxidation of the metal substrate covered by La0,8Ca0,2CrO3 In flexural strength of the coated metal substrate, it was noticed only in the increased room temperature. The a SEM analysis proved the formation of Cr2O3 and (Cr,Mn)3O4 layers on metal substrate and confirmed the stability of the ceramic La0,8 Ca0,2CrO3 film after oxidative test
Resumo:
To evaluate the biodistribution of sodium pertecnetate (Na99mTcO4) in organs and tissues, the morphometry of remnant intestinal mucosa and ponderal evolution in rats subjected to massive resection of the small intestine. Methods: Twenty-one Wistar rats were randomly divided into three groups of 7 animals each. The short bowel (SB) group was subjected to massive resection of the small intestine; the control group (C) rats were not operated on, and soft intestinal handling was performed in sham rats. The animals were weighed weekly. On the 30th postoperative day, 0.l mL of Na99mTcO4, with mean activity of 0.66 MBq was injected intravenously into the orbital plexus. After 30 minutes, the rats were killed with an overdose of anesthetic, and fragments of the liver, spleen, pancreas, stomach, duodenum, small intestine, thyroid, lung, heart, kidney, bladder, muscle, femur and brain were harvested. The biopsies were washed with 0.9% NaCl.,The radioactivity was counted using Gama Counter WizardTM 1470, PerkinElmer. The percentage of radioactivity per gram of tissue (%ATI-g) was calculated. Biopsies of the remaining jejunum were analysed by HE staining to obtain mucosal thickness. Analysis of variance (ANOVA) and the Tukey test for multiple comparisons were used, considering p<0.05 as signifi cant. Results: There were no signifi cant differences in %ATI-g of the Na99mTcO4 in the organs of the groups studied (p>0.05). An increase in the weight of the SB rats was observed after the second postoperative week. The jejunal mucosal thickness of the SB rats was signifi cantly greater than that of C and sham rats (p<0.05). Conclusion: In rats with experimentally-produced short bowel syndrome, an adaptive response by the intestinal mucosa reduced weight loss. The biodistribution of Na99mTcO4 was not affected by massive intestinal resection, suggesting that short bowel syndrome is not the cause of misleading interpretation, if an examination using this radiopharmaceutical is indicated
Resumo:
To evaluate the biodistribution of sodium pertecnetate (Na99mTcO4) in organs and tissues, the morphometry of remnant intestinal mucosa and ponderal evolution in rats subjected to massive resection of the small intestine. Methods: Twenty-one Wistar rats were randomly divided into three groups of 7 animals each. The short bowel (SB) group was subjected to massive resection of the small intestine; the control group (C) rats were not operated on, and soft intestinal handling was performed in sham rats. The animals were weighed weekly. On the 30th postoperative day, 0.l mL of Na99mTcO4, with mean activity of 0.66 MBq was injected intravenously into the orbital plexus. After 30 minutes, the rats were killed with an overdose of anesthetic, and fragments of the liver, spleen, pancreas, stomach, duodenum, small intestine, thyroid, lung, heart, kidney, bladder, muscle, femur and brain were harvested. The biopsies were washed with 0.9% NaCl.,The radioactivity was counted using Gama Counter WizardTM 1470, PerkinElmer. The percentage of radioactivity per gram of tissue (%ATI-g) was calculated. Biopsies of the remaining jejunum were analysed by HE staining to obtain mucosal thickness. Analysis of variance (ANOVA) and the Tukey test for multiple comparisons were used, considering p<0.05 as signifi cant. Results: There were no signifi cant differences in %ATI-g of the Na99mTcO4 in the organs of the groups studied (p>0.05). An increase in the weight of the SB rats was observed after the second postoperative week. The jejunal mucosal thickness of the SB rats was signifi cantly greater than that of C and sham rats (p<0.05). Conclusion: In rats with experimentally-produced short bowel syndrome, an adaptive response by the intestinal mucosa reduced weight loss. The biodistribution of Na99mTcO4 was not affected by massive intestinal resection, suggesting that short bowel syndrome is not the cause of misleading interpretation, if an examination using this radiopharmaceutical is indicated