1 resultado para 489
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Currently, computational methods have been increasingly used to aid in the characterization of molecular biological systems, especially when they relevant to human health. Ibuprofen is a nonsteroidal antiinflammatory or broadband use in the clinic. Once in the bloodstream, most of ibuprofen is linked to human serum albumin, the major protein of blood plasma, decreasing its bioavailability and requiring larger doses to produce its antiinflamatory action. This study aimes to characterize, through the interaction energy, how is the binding of ibuprofen to albumin and to establish what are the main amino acids and molecular interactions involved in the process. For this purpouse, it was conducted an in silico study, by using quantum mechanical calculations based on Density Functional Theory (DFT), with Generalized Gradient approximation (GGA) to describe the effects of exchange and correlation. The interaction energy of each amino acid belonging to the binding site to the ligand was calculated the using the method of molecular fragmentation with conjugated caps (MFCC). Besides energy, we calculated the distances, types of molecular interactions and atomic groups involved. The theoretical models used were satisfactory and show a more accurate description when the dielectric constant ε = 40 was used. The findings corroborate the literature in which the Sudlow site I (I-FA3) is the primary binding site and the site I-FA6 as secondary site. However, it differs in identifying the most important amino acids, which by interaction energy, in order of decreasing energy, are: Arg410, Lys414, Ser 489, Leu453 and Tyr411 to the I-Site FA3 and Leu481, Ser480, Lys351, Val482 and Arg209 to the site I-FA6. The quantification of interaction energy and description of the most important amino acids opens new avenues for studies aiming at manipulating the structure of ibuprofen, in order to decrease its interaction with albumin, and consequently increase its distribution