4 resultados para 3D Active shape models
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The present work develops a methodology to establish a 3D digital static models petroleum reservoir analogue using LIDAR and GEORADAR technologies. Therefore, this work introduce The methodolgy as a new paradigm in the outcrop study, to purpose a consistent way to integrate plani-altimetric data, geophysics data, and remote sensing products, allowing 2D interpretation validation in contrast with 3D, complexes depositional geometry visualization, including in environmental immersive virtual reality. For that reason, it exposes the relevant questions of the theory of two technologies, and developed a case study using TerraSIRch SIR System-3000 made for Geophysical Survey Systems, and HDS3000 Leica Geosystems, using the two technologies, integrating them GOCAD software. The studied outcrop is plain to the view, and it s located at southeast Bacia do Parnaíba, in the Parque Nacional da Serra das Confusões. The methodology embraces every steps of the building process shows a 3D digital static models petroleum reservoir analogue, provide depositional geometry data, in several scales for Simulation petroleum reservoir
Resumo:
The present work develops a methodology to establish a 3D digital static models petroleum reservoir analogue using LIDAR and GEORADAR technologies. Therefore, this work introduce The methodolgy as a new paradigm in the outcrop study, to purpose a consistent way to integrate plani-altimetric data, geophysics data, and remote sensing products, allowing 2D interpretation validation in contrast with 3D, complexes depositional geometry visualization, including in environmental immersive virtual reality. For that reason, it exposes the relevant questions of the theory of two technologies, and developed a case study using TerraSIRch SIR System-3000 made for Geophysical Survey Systems, and HDS3000 Leica Geosystems, using the two technologies, integrating them GOCAD software. The studied outcrop is plain to the view, and it s located at southeast Bacia do Parnaíba, in the Parque Nacional da Serra das Confusões. The methodology embraces every steps of the building process shows a 3D digital static models petroleum reservoir analogue, provide depositional geometry data, in several scales for Simulation petroleum reservoir
Resumo:
In Fazenda Belém oil field (Potiguar Basin, Ceará State, Brazil) occur frequently sinkholes and sudden terrain collapses associated to an unconsolidated sedimentary cap covering the Jandaíra karst. This research was carried out in order to understand the mechanisms of generation of these collapses. The main tool used was Ground Penetrating Radar (GPR). This work is developed twofold: one aspect concerns methodology improvements in GPR data processing whilst another aspect concerns the geological study of the Jandaíra karst. This second aspect was strongly supported both by the analysis of outcropping karst structures (in another regions of Potiguar Basin) and by the interpretation of radargrams from the subsurface karst in Fazenda Belém. It was designed and tested an adequate flux to process GPR data which was adapted from an usual flux to process seismic data. The changes were introduced to take into account important differences between GPR and Reflection Seismic methods, in particular: poor coupling between source and ground, mixed phase of the wavelet, low signal-to-noise ratio, monochannel acquisition, and high influence of wave propagation effects, notably dispersion. High frequency components of the GPR pulse suffer more pronounced effects of attenuation than low frequency components resulting in resolution losses in radargrams. In Fazenda Belém, there is a stronger need of an suitable flux to process GPR data because both the presence of a very high level of aerial events and the complexity of the imaged subsurface karst structures. The key point of the processing flux was an improvement in the correction of the attenuation effects on the GPR pulse based on their influence on the amplitude and phase spectra of GPR signals. In low and moderate losses dielectric media the propagated signal suffers significant changes only in its amplitude spectrum; that is, the phase spectrum of the propagated signal remains practically unaltered for the usual travel time ranges. Based on this fact, it is shown using real data that the judicious application of the well known tools of time gain and spectral balancing can efficiently correct the attenuation effects. The proposed approach can be applied in heterogeneous media and it does not require the precise knowledge of the attenuation parameters of the media. As an additional benefit, the judicious application of spectral balancing promotes a partial deconvolution of the data without changing its phase. In other words, the spectral balancing acts in a similar way to a zero phase deconvolution. In GPR data the resolution increase obtained with spectral balancing is greater than those obtained with spike and predictive deconvolutions. The evolution of the Jandaíra karst in Potiguar Basin is associated to at least three events of subaerial exposition of the carbonatic plataform during the Turonian, Santonian, and Campanian. In Fazenda Belém region, during the mid Miocene, the Jandaíra karst was covered by continental siliciclastic sediments. These sediments partially filled the void space associated to the dissolution structures and fractures. Therefore, the development of the karst in this region was attenuated in comparison to other places in Potiguar Basin where this karst is exposed. In Fazenda Belém, the generation of sinkholes and terrain collapses are controlled mainly by: (i) the presence of an unconsolidated sedimentary cap which is thick enough to cover completely the karst but with sediment volume lower than the available space associated to the dissolution structures in the karst; (ii) the existence of important structural of SW-NE and NW-SE alignments which promote a localized increase in the hydraulic connectivity allowing the channeling of underground water, thus facilitating the carbonatic dissolution; and (iii) the existence of a hydraulic barrier to the groundwater flow, associated to the Açu-4 Unity. The terrain collapse mechanisms in Fazenda Belém occur according to the following temporal evolution. The meteoric water infiltrates through the unconsolidated sedimentary cap and promotes its remobilization to the void space associated with the dissolution structures in Jandaíra Formation. This remobilization is initiated at the base of the sedimentary cap where the flow increases its abrasion due to a change from laminar to turbulent flow regime when the underground water flow reaches the open karst structures. The remobilized sediments progressively fill from bottom to top the void karst space. So, the void space is continuously migrated upwards ultimately reaching the surface and causing the sudden observed terrain collapses. This phenomenon is particularly active during the raining season, when the water table that normally is located in the karst may be temporarily located in the unconsolidated sedimentary cap
Resumo:
This project was developed as a partnership between the Laboratory of Stratigraphical Analyses of the Geology Department of UFRN and the company Millennium Inorganic Chemicals Mineração Ltda. This company is located in the north end of the paraiban coast, in the municipal district of Mataraca. Millennium has as main prospected product, heavy minerals as ilmenita, rutilo and zircon presents in the sands of the dunes. These dunes are predominantly inactive, and overlap the superior portion of Barreiras Formation rocks. The mining happens with the use of a dredge that is emerged at an artificial lake on the dunes. This dredge removes sand dunes of the bottom lake (after it disassembles of the lake borders with water jets) and directs for the concentration plant, through piping where the minerals are then separate. The present work consisted in the acquisition external geometries of the dunes, where in the end a 3D Static Model could be set up of these sedimentary deposits with emphasis in the behavior of the structural top of Barreiras Formation rocks (inferior limit of the deposit). The knowledge of this surface is important in the phase of the plowing planning for the company, because a calculation mistake can do with that the dredge works too close of this limit, taking the risk that fragments can cause obstruction in the dredge generating a financial damage so much in the equipment repair as for the stopped days production. During the field stages (accomplished in 2006 and 2007) topographical techniques risings were used with Total Station and Geodesic GPS as well as shallow geophysical acquisitions with GPR (Ground Penetrating Radar). It was acquired almost 10,4km of topography and 10km of profiles GPR. The Geodesic GPS was used for the data geopositioning and topographical rising of a traverse line with 630m of extension in the stage of 2007. The GPR was shown a reliable method, ecologically clean, fast acquisition and with a low cost in relation to traditional methods as surveys. The main advantage of this equipment is obtain a continuous information to superior surface Barreiras Formation rocks. The static models 3D were elaborated starting from the obtained data being used two specific softwares for visualization 3D: GoCAD 2.0.8 and Datamine. The visualization 3D allows a better understanding of the Barreiras surface behavior as well as it makes possible the execution of several types of measurements, favoring like calculations and allowing that procedures used for mineral extraction is used with larger safety