3 resultados para 230106 Real and Complex Functions
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Notable mathematics teacher, Lewis Carroll, pseudonym of Charles Lutwidge Dodgson (1832-1898), made the mixture of mathematics with literature a ludic environment for learning that discipline. Author of Alice s Adventures In Wonderland and its sequel Alice Through The Looking Glass, he eventually created a real and complex universe which uses what we call the logic of the nonsense as an element to motivate the development of mathematical thinking of the reader, taking it as well, learn by establishing a link between the concrete (mathematics) and the imaginary (their universe). In order to investigate and discuss the educational potential of their works and state some elements that can contribute to a decentralized math education from the traditional method of following the models and decorate formulas, we visited his works based on the studies of archeology of knowledge (FOUCAULT, 2007), the rational thought and symbolic thinking (VERGANI, 2003) and about the importance of stories and narratives to the development of human cognition (FARIAS, 2006). Through a descriptive, analytical study, we used the literary construction and presented part of our study in form of a mathematical novel, to give the mathematical school a particular charm, without depriving it of its basics properties as discipline and content. Our study showed how the works of Carroll have a strong didactic element that can deploy in various activities of study and teaching for mathematics classes
Resumo:
In this work we use Interval Mathematics to establish interval counterparts for the main tools used in digital signal processing. More specifically, the approach developed here is oriented to signals, systems, sampling, quantization, coding and Fourier transforms. A detailed study for some interval arithmetics which handle with complex numbers is provided; they are: complex interval arithmetic (or rectangular), circular complex arithmetic, and interval arithmetic for polar sectors. This lead us to investigate some properties that are relevant for the development of a theory of interval digital signal processing. It is shown that the sets IR and R(C) endowed with any correct arithmetic is not an algebraic field, meaning that those sets do not behave like real and complex numbers. An alternative to the notion of interval complex width is also provided and the Kulisch- Miranker order is used in order to write complex numbers in the interval form enabling operations on endpoints. The use of interval signals and systems is possible thanks to the representation of complex values into floating point systems. That is, if a number x 2 R is not representable in a floating point system F then it is mapped to an interval [x;x], such that x is the largest number in F which is smaller than x and x is the smallest one in F which is greater than x. This interval representation is the starting point for definitions like interval signals and systems which take real or complex values. It provides the extension for notions like: causality, stability, time invariance, homogeneity, additivity and linearity to interval systems. The process of quantization is extended to its interval counterpart. Thereafter the interval versions for: quantization levels, quantization error and encoded signal are provided. It is shown that the interval levels of quantization represent complex quantization levels and the classical quantization error ranges over the interval quantization error. An estimation for the interval quantization error and an interval version for Z-transform (and hence Fourier transform) is provided. Finally, the results of an Matlab implementation is given
Resumo:
We propose a new approach to reduction and abstraction of visual information for robotics vision applications. Basically, we propose to use a multi-resolution representation in combination with a moving fovea for reducing the amount of information from an image. We introduce the mathematical formalization of the moving fovea approach and mapping functions that help to use this model. Two indexes (resolution and cost) are proposed that can be useful to choose the proposed model variables. With this new theoretical approach, it is possible to apply several filters, to calculate disparity and to obtain motion analysis in real time (less than 33ms to process an image pair at a notebook AMD Turion Dual Core 2GHz). As the main result, most of time, the moving fovea allows the robot not to perform physical motion of its robotics devices to keep a possible region of interest visible in both images. We validate the proposed model with experimental results