3 resultados para 12C
em Universidade Federal do Rio Grande do Norte(UFRN)
Influência das espécies ativas na absorção de intersticiais durante a carbonitretação a plasma do TI
Resumo:
Physical-chemical properties of Ti are sensible to the presence of interstitial elements. In the case of thermochemical treatments plasma assisted, the influence of different active species is not still understood. In order to contribute for such knowledge, this work purposes a study of the role played by the active species atmosphere into the Ar N2 CH4 carbonitriding plasma. It was carried out a plasma diagnostic by OES (Optical Emission Spectroscopy) in the z Ar y N2 x CH4 plasma mixture, in which z, y and x indexes represent gas flow variable from 0 to 4 sccm (cm3/min). The diagnostic presents abrupt variations of emission intensities associated to the species in determined conditions. Therefore, they were selected in order to carry out the chemical treatment and then to investigate their influences. Commercial pure Ti disks were submitted to plasma carbonitriding process using pre-established conditions from the OES measurements while some parameters such as pressure and temperature were maintained constant. The concentration profiles of interstitial elements (C and N atoms) were determined by Resonant Nuclear Reaction Analysis (NRA) resulting in a depth profile plots. The reactions used were 15N(ρ,αγ)12C and 12C(α,α)12C. GIXRD (Grazing Incidence X-Ray Diffraction) analysis was used in order to identify the presence of phases on the surface. Micro-Raman spectroscopy was used in order to qualitatively study the carbon into the TiCxN1 structure. It has been verified which the density species effectively influences more the diffusion of particles into the Ti lattice and characteristics of the layer formed than the gas concentration. High intensity of N2 + (391,4 nm) and CH (387,1 nm) species promotes more diffusion of C and N. It was observed that Hα (656,3 nm) species acts like a catalyzer allowing a deeper diffusion of nitrogen and carbon into the titanium lattice.
Resumo:
Carciniculture in Brazil occupies world-wide prominence due to shrimp culture, and the state of Rio Grande do Norte has presented the best results in the culture of the Litopenaeus vannamei in the last decade. This species has been shown to adapt easily to different environments and is between the five most cultivated penaeids of the world. The ponds are usually constructed in areas close to water courses and estuaries. Stock density and substrate ponds can pollute environment, causing losses in the growth and survival of the shrimps, being considered stress factors. Shrimps in inadequate densities and substrates can result reduced productivity of the farm; and favor diseases. So, it is important to verify how these variables influence the development of the animals in the culture farms. Our objective was to study the influence of the type of substrate and the stock density on the behavior and haemocyte count of the L. vannamei. Individually marked juvenile shrimps were kept in aquaria with 30 L of seawater and continuous aeration, in 12L-12D photoperiod. They were observed through Ad libitum and focal sampling instantaneous methods during thirty days, five times per week, six times per day (8:00 to 18:00) in windows of 15 minutes every two hours. The marking of carapace permitted quantifying molting and the feeding was supplied three times a day. Two experiments were carried out: the first one tested animals in the three different substrates (fine sand, smaller rocks-SPP and biggest rocks-SGR) with 33 shrimp/m2. In the second one, the animals were tested in three stock densities (26, 52 and 66 shrimp/m2) in fine sand substrate. At the end of experiment, biometry (first and second ones) and haemocyte count (second one) were made. The behavior of the L. vannamei seems to have been influenced by substrate and stocking density. In low granulometry of the substrate; the exploratory behavior became more frequent and inactivity of the shrimps was reduced. Burrowing was registered in sand substrate, specially in the initial period of the day. Cleaning was gradually higher along the day, presenting the biggest levels as the dark phase approached. The ingestion of feeding was more frequent in low density, and the animals were bigger and heavier at the end of the experiment. In the fine sand condition, the animals presented better growth, probably associated with the burrowing. The molting was equivalent in all types of substrate, but it was more frequent in high densities. Mortality of the shrimps was more frequent in high densities, and cannibalism and diseases were also registered in that condition. The clinical signals were similar to the ones of infectious mionecrosis (IMNV), generally associated with environment and physical stress. The haemocyte count was low for the hematologic standards of the penaeid, which we attributed for greater dilution of haemolymph in the postmolting phase. Smaller shrimps presented lower levels of haemocytes in relation to the bigger animals, count was also low in 26 shrimp/m2 density. The study demonstrates that stocking density and the granulometry of the substrate can affect the welfare, the health and the behavior of the L. vannamei. The sand substrate and low stocking density can be important tools in the management systems of shrimp production
Influência das espécies ativas na absorção de intersticiais durante a carbonitretação a plasma do TI
Resumo:
Physical-chemical properties of Ti are sensible to the presence of interstitial elements. In the case of thermochemical treatments plasma assisted, the influence of different active species is not still understood. In order to contribute for such knowledge, this work purposes a study of the role played by the active species atmosphere into the Ar N2 CH4 carbonitriding plasma. It was carried out a plasma diagnostic by OES (Optical Emission Spectroscopy) in the z Ar y N2 x CH4 plasma mixture, in which z, y and x indexes represent gas flow variable from 0 to 4 sccm (cm3/min). The diagnostic presents abrupt variations of emission intensities associated to the species in determined conditions. Therefore, they were selected in order to carry out the chemical treatment and then to investigate their influences. Commercial pure Ti disks were submitted to plasma carbonitriding process using pre-established conditions from the OES measurements while some parameters such as pressure and temperature were maintained constant. The concentration profiles of interstitial elements (C and N atoms) were determined by Resonant Nuclear Reaction Analysis (NRA) resulting in a depth profile plots. The reactions used were 15N(ρ,αγ)12C and 12C(α,α)12C. GIXRD (Grazing Incidence X-Ray Diffraction) analysis was used in order to identify the presence of phases on the surface. Micro-Raman spectroscopy was used in order to qualitatively study the carbon into the TiCxN1 structure. It has been verified which the density species effectively influences more the diffusion of particles into the Ti lattice and characteristics of the layer formed than the gas concentration. High intensity of N2 + (391,4 nm) and CH (387,1 nm) species promotes more diffusion of C and N. It was observed that Hα (656,3 nm) species acts like a catalyzer allowing a deeper diffusion of nitrogen and carbon into the titanium lattice.