5 resultados para 1045
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The main objective is to analyze the abrasive wear resistance to the low stress of the elements that make up the organs of road machinery that are exposed directly to contact with abrasives. These samples were analyzed after these elements are coated superficially by the process of welding electrode coated with (SAER) and the manual process of coating type LVOF thermal spraying. As well, is to provide suggestions for a better recovery and return of these elements, which are reducing costs and avoiding downtime in the fronts of service. The samples were made from a substrate of carbon ABNT 1045 tempered steel, following the same specifications and composition of metals and alloys of constituents was followed the standard governing the dimensions of these samples and in accordance with the corresponding size. The results were evaluated by testing the hardness, abrasion resistance to wear by the low stress and the loss of volume involving the microstructure of coatings analyzed
Resumo:
Portland-polymers composites are promising candidates to be used as cementing material in Northeastern oil wells of Brazil containing heavy oils submitted to steam injection. In this way, it is necessary to evaluate its degradation in the commonly acidizind agents. In addition, to identify how aggressive are the different hostile environments it is an important contribution on the decision of the acidic systems to be used in. It was investigated the performance of the Portland-polymer composites using powdered polyurethane, aqueous polyurethane, rubber tire residues and a biopolymer, those were reinforced with polished carbon steel SAE 1045 to make the electrochemical measurements. HCl 15,0 %, HCl 6,0 % + HF 1,5 % (soft mud acid), HCl 12,0 % + HF 3,0 % (regular mud acid) and HAc 10 % + HF 1,5 % were used as degrading environment and electrolytes. The more aggressive acid solution to the plain Portland hardened cement paste was the regular mud acid, that showed loss of weight around 23.0 %, followed by the soft mud acid, the showed 11.0 %, 15.0 % HCl with 7,0 % and, at last the 10.0 % HAc plus HF 1.5 % with just 1.0 %. The powdered polyurethane-composite and the aqueous polyurethane one showed larger durability, with reduction around 87.0 % on the loss of weight in regular mud acid. The acid attack is superficial and it occurs as an action layer, where the degraded layer is responsible for the decrease on the kinetic of the degrading process. This behavior can be seen mainly on the Portland- aqueous polyurethane composite, because the degraded layer is impregnated with chemically modified polymer. The fact of the acid attack does not have influence on the compressive strength or fratography of the samples, in a general way, confirms that theory. The mechanism of the efficiency of the Portland-polymers composites subjected to acid attack is due to decreased porosity and permeability related with the plain Portland paste, minor quantity of Ca+2, element preferentially leached to the acidic solution, wave effect and to substitute part of the degrading bulk for the polymeric one. The electrolyte HAc 10 % + HF 1,5 % was the least aggressive one to the external corrosion of the casing, showing open circuit potentials around +250 mV compared to -130 mV to the simulated pore solution to the first 24 hours immersion. This behavior has been performed for two months at least. Similar corrosion rates were showed between both of the electrolytes, around 0.01 μA.cm-2. Total impedance values, insipient arcs and big polarization resistance capacitive arcs on the Nyquist plots, indicating passivity process, confirm its efficiency. In this way, Portlandpolymers composites are possible solutions to be succeed applied to oilwell cementing concomitant submitted to steam injection and acidizing operation and the HAc 10,0 % + HF 1,5 % is the less aggressive solution to the external corrosion of the casing
Resumo:
The lubricants found in the market are of mineral or synthetic origin and harm to humans and the environment, mainly due to their improper discard. Therefore industries are seeking to develop products that cause less environmental impact, so to decrease mainly, operator aggression the Cutting Fluids became an emulsion of oil / water or water / oil. However, the emulsion was not considered the most suitable solution for environmental question, therefore the search for biodegradable lubricants and which no are toxic continues and so vegetable oils are seen, again, as a basis for the production of lubricants. The biggest problem with these oils is their oxidative instability that is intensified when working at high temperatures. The process transesterification decreases the oxidation, however changes some physical and chemical properties. Therefore soybean oil after the transesterification process was subjected to tests of density, dynamic viscosity, kinematic viscosity which is calculated from two parameters mentioned, flash point and acidity. Besides the physico-chemical test the soybean oil was subjected to a dynamic test in a tribometer adapted from a table vise, whose induced wear was the adhesive and ultimately was used as cutting fluid in a process of turning in two different materials, steel 1045 and cast iron. This latter test presented results below the mineral cutting fluid which it was compared in all tests, already in other experiments the result was satisfactory and other experiments not, so that chemical additives can be added to the oil analyzed to try equate all parameters and so formulate a biolubrificante not toxic to apply in machining processes of metalworking industry
Resumo:
The main objective is to analyze the abrasive wear resistance to the low stress of the elements that make up the organs of road machinery that are exposed directly to contact with abrasives. These samples were analyzed after these elements are coated superficially by the process of welding electrode coated with (SAER) and the manual process of coating type LVOF thermal spraying. As well, is to provide suggestions for a better recovery and return of these elements, which are reducing costs and avoiding downtime in the fronts of service. The samples were made from a substrate of carbon ABNT 1045 tempered steel, following the same specifications and composition of metals and alloys of constituents was followed the standard governing the dimensions of these samples and in accordance with the corresponding size. The results were evaluated by testing the hardness, abrasion resistance to wear by the low stress and the loss of volume involving the microstructure of coatings analyzed
Resumo:
Portland-polymers composites are promising candidates to be used as cementing material in Northeastern oil wells of Brazil containing heavy oils submitted to steam injection. In this way, it is necessary to evaluate its degradation in the commonly acidizind agents. In addition, to identify how aggressive are the different hostile environments it is an important contribution on the decision of the acidic systems to be used in. It was investigated the performance of the Portland-polymer composites using powdered polyurethane, aqueous polyurethane, rubber tire residues and a biopolymer, those were reinforced with polished carbon steel SAE 1045 to make the electrochemical measurements. HCl 15,0 %, HCl 6,0 % + HF 1,5 % (soft mud acid), HCl 12,0 % + HF 3,0 % (regular mud acid) and HAc 10 % + HF 1,5 % were used as degrading environment and electrolytes. The more aggressive acid solution to the plain Portland hardened cement paste was the regular mud acid, that showed loss of weight around 23.0 %, followed by the soft mud acid, the showed 11.0 %, 15.0 % HCl with 7,0 % and, at last the 10.0 % HAc plus HF 1.5 % with just 1.0 %. The powdered polyurethane-composite and the aqueous polyurethane one showed larger durability, with reduction around 87.0 % on the loss of weight in regular mud acid. The acid attack is superficial and it occurs as an action layer, where the degraded layer is responsible for the decrease on the kinetic of the degrading process. This behavior can be seen mainly on the Portland- aqueous polyurethane composite, because the degraded layer is impregnated with chemically modified polymer. The fact of the acid attack does not have influence on the compressive strength or fratography of the samples, in a general way, confirms that theory. The mechanism of the efficiency of the Portland-polymers composites subjected to acid attack is due to decreased porosity and permeability related with the plain Portland paste, minor quantity of Ca+2, element preferentially leached to the acidic solution, wave effect and to substitute part of the degrading bulk for the polymeric one. The electrolyte HAc 10 % + HF 1,5 % was the least aggressive one to the external corrosion of the casing, showing open circuit potentials around +250 mV compared to -130 mV to the simulated pore solution to the first 24 hours immersion. This behavior has been performed for two months at least. Similar corrosion rates were showed between both of the electrolytes, around 0.01 μA.cm-2. Total impedance values, insipient arcs and big polarization resistance capacitive arcs on the Nyquist plots, indicating passivity process, confirm its efficiency. In this way, Portlandpolymers composites are possible solutions to be succeed applied to oilwell cementing concomitant submitted to steam injection and acidizing operation and the HAc 10,0 % + HF 1,5 % is the less aggressive solution to the external corrosion of the casing