4 resultados para 02051120 TM-8

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies are investigating a new class of inorganic materials which arise as a promising option for high performance applications in the field of photoluminescence. Highlight for rare earth (TR +3 ) doped, which have a high luminous efficiency, long decay time and being able to emit radiation in the visible range, specific to each element. In this study, we synthesized ZrO2: Tb +3 , Eu +3 , Tm +3 nanoparticles complex polymerization method (CPM). We investigated the influences caused by the heat treatment temperature and the content of dopants in zirconia photoluminescent behavior. The particles were calcined at temperature of 400, 500 and 600 ° C for two hours and ranged in concentration of dopants 1, 2, 4 and 8 mol% TR +3 . The samples were characterized by thermal analysis, X-ray diffraction, photoluminescence of measurements and uv-visible of spectroscopies. The results of X-ray diffraction confirmed the formation of the tetragonal and cubic phases in accordance with the content of dopants. The photoluminescence spectra show emission in the region corresponding simultaneous to blue (450 nm), green (550 nm) and red (615 nm). According to the results, ZrO2 particles co-doped with rare earth ions is a promising material white emission with a potential application in the field of photoluminescence

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutations on TP53 gene are common in human cancer but not in cervical cancer where they are rarely found and the inactivation and degradation of p53 protein are attributed to the action of E6 viral oncogene from high risk human papillomavirus (HPV). Analysis of cervical cancer cell lines suggests that HPV negative samples shows mutation on TP53, but clinical approaches didn t confirmed this hypothesis. However, in most TP53 mutations studies on cervical cancer, only the exons 5 to 8 were analyzed. Approximately 90% of mutations described are on this region. Recent studies on several cancer suggests that mutation frequency in the other exons must be considered. The aim of this work was to verify whether mutations on coding and non-coding regions occur in cancer tissue from cervical cancer in patients from Rio Grande do Norte using Denaturing Gradient Gel Electrophoresis (DGGE) as screening tool. Exons 8 to 11 were analyzed including some introns from 80 tumor samples and 8 peripheral blood samples from healthy women. DNA were submitted to PCR using primers with GC clamp on the end of one of them. The results were observed for each region after DGGE and silver staining. It was observed no amplified fragment with different migration profile from those obtained from DNA of peripheral blood. These results agree with those from literature where TP53 mutations in cervical cancer have been described in a very low frequency

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cobalt-manganese ferrites (Co1¡xMnxFe2O4 and Co1,2Fe1,8¡xMnxO4) has a mixed structure of spinel type and it has been regarded as one of candidates for petitive wide variety of applications in devices from ultrasonic generation and detection, sensors, transformers, as well as in medical industry. Ferrites cobalt-manganese nanostructured were produced via mechanical alloying with subsequent heat treatment and were characterized by X-ray diffraction, X-ray fluorescence, scanning electron microscopy and magnetization. Samples of Co1¡xMnxFe2O4 and Co1,2Fe1,8¡xMnxO4 were obtained from the precursor powders Fe3O4, Co3O4 and Mn3O4 which were stoichiometrically mixed and ground by 10h and heat treated at 900°C for 2h. The diffraction confirmed the formation of the pure nanocrystalline phases to series Co1,2Fe1,8¡xMnxO4 with an average diameter of about 94nm. It was found that the lattice parameter increases with the substitution of Fe3Å by Mn3Å. The x-ray fluorescence revealed that the portions of metals in samples were close to the nominal stoichiometric compositions. The microstructural features observed in micrographs showed that the particles formed show very different morphology and particle size. The magnetic hysteresis measurements performed at low temperature showed that the saturation magnetization and remanence increased as the concentration of manganese, while the coercive field decreased. The anisotropy constant (Ke f ), was estimated from the data adjustments the law of approaching saturation. It was found that the anisotropy decreases substantially with the substitution of Fe by Mn.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies are investigating a new class of inorganic materials which arise as a promising option for high performance applications in the field of photoluminescence. Highlight for rare earth (TR +3 ) doped, which have a high luminous efficiency, long decay time and being able to emit radiation in the visible range, specific to each element. In this study, we synthesized ZrO2: Tb +3 , Eu +3 , Tm +3 nanoparticles complex polymerization method (CPM). We investigated the influences caused by the heat treatment temperature and the content of dopants in zirconia photoluminescent behavior. The particles were calcined at temperature of 400, 500 and 600 ° C for two hours and ranged in concentration of dopants 1, 2, 4 and 8 mol% TR +3 . The samples were characterized by thermal analysis, X-ray diffraction, photoluminescence of measurements and uv-visible of spectroscopies. The results of X-ray diffraction confirmed the formation of the tetragonal and cubic phases in accordance with the content of dopants. The photoluminescence spectra show emission in the region corresponding simultaneous to blue (450 nm), green (550 nm) and red (615 nm). According to the results, ZrO2 particles co-doped with rare earth ions is a promising material white emission with a potential application in the field of photoluminescence