166 resultados para corrosão de titânio


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of products whose purpose is to promote blockages in high permeability zones as well as to control the hydrate or scale formation also needs some tests in porous media before using the product in the field, where attempts and unavoidable operational errors costs would able to derail any projects. The aim of this study was to analyze and compare the Botucatu and Berea sandstones properties, involving problems related to loss permeability. It was observed that even cores of Berea, without expansible clays in their composition had their permeability reduced, as soon as the salinity of brine reached a lower limit. As expected, the same happened with the Botucatu sandstone samples, however, in this case, the sensitivity to low salinity was more pronounced. In a second phase, the research was focused on the Botucatu Sandstone behavior front of dilute polymer solutions injection, checking the main relationships between the Rock / Fluid interactions, considering the Mobility Reduction, Resistance and Residual Resistance Factors, as well as adsorption/desorption processes of these polymers, and the polymer molecules average size and porous sandstone average size ratio. The results for both phases showed a real feasibility of using the Botucatu sandstone in laboratory tests whose objective is the displacement of fluids through porous media

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water and gas is a common by - product of the oil production process. Production may be compromised by the precipitation of inorganic salts in both the reservoir and producing well, through scale formation. This precipitation is likely the cause of the formation damage. High temperatures and h igh pressures (HTHP) may favor the precipitation of insoluble salts. The most common types of scale in oil fields are calcium carbonate and calcium sulphate, strontium and barium sulphate. New types of scale formation have attracted special attention such as zinc sulphide and lead. This precipitation may occur in the pores of reservoir rocks, in the production string and in equipment, causing obstructions and consequent production losses. In this study, the influence of well depth on incrustation compositio n was investigated to design removal treatments and assess the behavior of these deposits along the string, through the analysis of pressure and temperature. Scale residues were recovered from the inside of the production string of an oil and gas well duri ng the string removal operation. A total of 10 samples from different depths (15.4 m to 4061.5 m) were obtained. Initially a dissolution test was conducted in weak acid, similar to that used in removal operations with this type of scale formation. Majority composition was defined and confirmed by dissolution tests using X - Ray Fluorescence Spectroscopy (XRF), X - Ray Diffraction (XRD) and Scanning Electron Microscope (SEM) techniques. Residues with distinct characteristics were observed in different proportion s, showing a tendency toward increased and/or decreased mass with depth. In the samples closest to the surface, typical sandstone residues were found, with calcium (45% Ca) as the metal of highest concentration. The obtained results indicate correlations o f the scale types studied with the depth and, consequently, with the thermodynamic conditions of pressure and temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stimulus encouraging the production and consumption of biodiesel favors the policy of pre-serving the environment, contributing to the reduction of greenhouse gas reducing climate change. The current trend of research in this field focuses on improving these processes with the use of heterogeneous catalysts, seeing has significant advantages such as: low contamination of products, ease of separation of the catalyst from the reaction medium, possibili-ty of reuse of the catalyst, decreased corrosion problems. The objective of this research was to optimize the synthesis of AlSBA-15 for the production of biodiesel through transesterification process via ethyl route. For the optimization of hydrothermal synthesis of type AlSBA-15 catalyst has assembled a 23 factorial experimental matrix with eleven trials. The stoichiometric amounts of starting materials were varied according to different ratios Si / Al which is a factor in the experimental design, in addition to the time and temperature of aging of the synthesis gel. The material showed the best results of characterization (SBET = 591.7 (m2 / g), Vp = 0.83 (cm3 / g), Dp = 5.59 (nm), w = 6.48 (nm) was synthesized at 100 ° C for 24 hours, with a ratio Si / Al = 10.This material was applied as a heterogeneous catalyst in the reaction of ethyl transesterification as raw coconut oil in natura. Coconut oil presented suitable for obtaining biodiesel via ethyl route.The visual aspects and physical-chemical characteristics of the reaction products show that AlSBA-15 catalyst favored the reaction. According to physical-chemical analysis the order of oxidative stability of the product of the transesterification reaction was: catalytic reaction at 1500 ° C> non-catalytic reaction at 100 ° C> 100 ° C catalytic> catalytic reaction at 200 ° C Reaction. The results of oxidative stability and kinematic viscosity shows that the biodiesel produced in the catalytic sandblasting held at 150 ° C which was maintained within the ABNT NBR 7148, ABNT NBR 10441 and EN 14112.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Porous structures are being widely investigated for use in biomedical implants, aiming to mechanically integrate and functionally the implant inside the bone tissue. Moreover, this structure is also important for drugs that can be stored and can induce and accelerate the process of osseointegration. With the purpose to investigate this effect, Ti, Nb and Sn metal powders, were sintered by plasma using a hollow cathode discharge. Sintering was performed in argon plasma set at 4 mbar pressure and temperatures of 500 ° C, 600 ° C and 700 ° C. Samples were also sintered in the electrical resistance furnace at 1200 ° C in order to compare plasma sintering with the conventional method. It was observed that plasma samples sintered with the hollow cathode configuration showed a gradient in porosity, while the samples sintered in the resistive furnace did not. Furthermore, differences in the microstructure of the samples were found, were a surface with higher porosity and ales porous core were obtained at different temperatures. The percolation profile of distilled water and the chemical compositions of the porous layers of the plasma treated samples were the main results obtained. Based on these results, we can conclude that this structure is particularly important for application in the biomedical field such as scaffolds for drug delivery and implants

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nickel alloys are widely used in the production of various materials, especially those that require mechanical strength characteristics associated with resistance to corrosion, for example, the stainless steel. Another use is the production of nickel alloy sintered from powder of metallic nickel. A promising alternative for the production of sintered components of nickel with an important reduction in costs of starting material is the use of mixtures of powders of Ni-NiO. This work aimed to study in situ reduction of NiO during sintering mixtures of Ni / NiO produced by powder metallurgy. The nickel mixtures have been processed by the technique of powder metallurgy and were pre-sintered in an oven under plasma reducing atmosphere of hydrogen. Mixtures Ni +15%NiO, Ni +25%NiO and Ni +35%NiO were studied and compared with samples consisting only of metallic Ni. Dilatometric tests were performed to study the sintering conditions of the mixtures. The consolidated material was analyzed for their microstructure and microhardness. Dilatometry graphs showed that the addition of nickel oxide in all compositions the active sintering the mixtures studied. In tests of microhardness indentations were made at different points of the sample surface. All compositions showed microhardness values close to the consolidated material from metallic nickel. However, sample containing Ni+35% NiO, showed a large dispersion of the values of microhardness tests performed at different points of the sample surface. Microstructural analysis of the material showed a higher concentration of voids and the presence of oxides in the waste composition of the mixtures Ni 35% NiO. The samples containing Ni+15%NiO showed microstructural characteristics and mechanical properties similar to metallic nickel consolidated under the same conditions of the compositions studied in this work and therefore had great potential for production of sintered nickel alloys

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the main problems related to the use of diesel as fuel is the presence of sulfur (S) which causes environmental pollution and corrosion of engines. In order to minimize the consequences of the release of this pollutant, Brazilian law established maximum sulfur content that diesel fuel may have. To meet these requirements, diesel with a maximum sulfur concentration equal to 10 mg/kg (S10) has been widely marketed in the country. However, the reduction of sulfur can lead to changes in the physicochemical properties of the fuel, which are essential for the performance of road vehicles. This work aims to identify the main changes in the physicochemical properties of diesel fuel and how they are related to reduction of sulfur content. Samples of diesel types S10, S500 and S1800 were tested according with the methods of the American Society for Testing and Materials (ASTM). The fuels were also characterized by thermogravimetric analysis (TG) and subjected to physical distillation (ASTM D86) and simulated distillation gas chromatography (ASTM D2887). The results showed that the reduction of sulfur turned the fuel lighter and fluid, allowing a greater applicability to low temperature environments and safer for transportation and storage. Through the simulated distillation data was observed that decreasing sulfur content resulted in higher initial boiling point temperatures and the decreasing of the boiling temperature of the medium and heavy fractions. Thermogravimetric analysis showed a loss event mass attributed to volatilization or distillation of light and medium hydrocarbons. Based on these data, the kinetic behavior of the samples was investigated and it was observed that the activation energies (Ea) did not show significant changes throughout conversion. Considering the average of these energies, the S1800 had the highest Ea during the conversion and the S10 the lowest values

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The demand for materials with high consistency obtained at relatively low temperatures has been leveraging the search for chemical processes substituents of the conventional ceramic method. This paper aims to obtain nanosized pigments encapsulated (core-shell) the basis of TiO2 doped with transition metals (Fe, Co, Ni, Al) through three (3) methods of synthesis: polymeric precursors (Pechini); hydrothermal microwave, and co-precipitation associated with the sol-gel chemistry. The study was motivated by the simplicity, speed and low power consumption characteristic of these methods. Systems costs are affordable because they allow achieving good control of microstructure, combined with high purity, controlled stoichiometric phases and allowing to obtain particles of nanometer size. The physical, chemical, morphological, structural and optical properties of the materials obtained were analyzed using different techniques for materials characterization. The powder pigments were tested in discoloration and degradation using a photoreactor through the solution of Remazol yellow dye gold (NNI), such as filtration, resulting in a separation of solution and the filter pigments available for further UV-Vis measurements . Different calcination temperatures taken after obtaining the post, the different methods were: 400 º C and 1000 º C. Using a fixed concentration of 10% (Fe, Al, Ni, Co) mass relative to the mass of titanium technologically and economically enabling the study. By transmission electron microscopy (TEM) technique was possible to analyze and confirm the structural formation nanosized particles of encapsulated pigment, TiO2 having the diameter of 20 nm to 100 nm, and thickness of coated layer of Fe, Ni and Co between 2 nm and 10 nm. The method of synthesis more efficient has been studied in the work co-precipitation associated with sol-gel chemistry, in which the best results were achieved without the need for the obtainment of powders the calcination process

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The plasma nitriding has been used in industrial and technological applications for large-scale show an improvement in the mechanical, tribological, among others. In order to solve problems arising in the conventional nitriding, for example, rings constraint (edge effect) techniques have been developed with different cathodes. In this work, we studied surfaces of commercially pure titanium (Grade II), modified by plasma nitriding treatment through different settings cathodes (hollow cathode, cathodic cage with a cage and cathodic cage with two cages) varying the temperature 350, 400 and 430oC, with the goal of obtaining a surface optimization for technological applications, evaluating which treatment generally showed better results under the substrate. The samples were characterized by the techniques of testing for Atomic Force Microscopy (AFM), Raman spectroscopy, microhardness, X-ray diffraction (XRD), and a macroscopic analysis. Thus, we were able to evaluate the processing properties, such as roughness, topography, the presence of interstitial elements, hardness, homogeneity, uniformity and thickness of the nitrided layer. It was observed that all samples were exposed to nitriding modified relative to the control sample (no treatment) thus having increased surface hardness, the presence of TiN observed by XRD as per both Raman and a significant change in the roughness of the treated samples . It was found that treatment in hollow cathode, despite having the lowest value of microhardness between treated samples, was presented the lowest surface roughness, although this configuration samples suffer greater physical aggressiveness of treatment

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the increasing environmental awareness, maximizing biodegradability and minimizing ecotoxicity is the main driving force for new technological developments. Thus, can be developed new biodegradable lubricants for use in environmentally sensitive areas. The aim of this study was to obtain new bio-lubricants from passion fruit (Passiflora edulis Sims f. flavicarpa Degener) and moringa (Moringa oleifera Lamarck) epoxidized oils and develop a new additive package using experimental design for their use as a hydraulic fluid. In the first stage of this work was performed the optimization of the epoxidation process of the oils using fractional experimental design 24-1 , varying the temperature, reaction time, ratio of formic acid and hydrogen peroxide. In the second step was investigated the selectivity, thermodynamics and kinetics of the reaction for obtaining the two epoxides at 30, 50 and 70 °C. The result of the experimental design confirmed that the epoxidation of passion fruit oil requires 2 hours of reaction, 50 °C and a ratio H2O2/C=C/HCOOH (1:1:1). For moringa oil were required 2 hours reaction, 50 °C and a ratio of H2O2/C=C/HCOOH (1:1:1.5). The results of the final conversions were equal to 83.09% (± 0.3) for passion fruit oil epoxide and 91.02 (±0,4) for moringa oil epoxide. Following was made the 23 factorial design to evaluate which are the best concentrations of corrosion inhibitor and anti-wear (IC), antioxidant (BHA) and extreme pressure (EP) additives. The bio-lubricants obtained in this step were characterized according to DIN 51524 (Part 2 HLP) and DIN 51517 (Part 3 CLP) standards. The epoxidation process of the oils was able to improve the oxidative stability and reduce the total acid number, when compared to the in natura oils. Moreover, the epoxidized oils best solubilized additives, resulting in increased performance as a lubricant. In terms of physicochemical performance, the best lubricant fluid was the epoxidized moringa oil with additives (EMO-ADI), followed by the epoxidized passion fruit oil with additives (EPF-ADI) and, finally, the passion fruit in natura oil without additives (PFO). Lastly, was made the investigation of the tribological behavior under conditions of boundary lubrication for these lubricants. The tribological performance of the developed lubricants was analyzed on a HFRR equipment (High Frequency Reciprocating Rig) and the coefficient of friction, which occurs during the contact and the formation of the lubricating film, was measured. The wear was evaluated through optical microscopy and scanning electron microscopy (SEM). The results showed that the addition of extreme pressure (EP) and anti-wear and corrosion inhibitor (CI) additives significantly improve the tribological properties of the fluids. In all assays, was formed a lubricating film that is responsible for reducing the coefficient of metal-to-metal wear. It was observed that the addition of EP and IC additives in the in natura vegetable oils of passion fruit and moringa did not favor a significant reduction in wear. The bio-lubricants developed from passion fruit and moringa oils modified via epoxidation presented satisfactory tribological properties and shown to be potential lubricants for replacement of commercial mineral-based fluids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A combinação da Moldagem por Injeção de pós Metálicos (Metal Injection Moulding MIM) e o Método do Retentor Espacial (Space Holder Method - SHM) é uma técnica promissora para fabricação de peças porosas de titânio com porosidade bem definida como implantes biomédicos, uma vez que permite um alto grau de automatização e redução dos custos de produção em larga escala quando comparado a técnica tradicional (SHM e usinagem a verde). Contudo a aplicação desta técnica é limitada pelo fato que há o fechamento parcial da porosidade na superfície das amostras, levando ao deterioramento da fixação do implante ao osso. E além disso, até o presente momento não foi possível atingir condições de processamento estáveis quando a quantidade de retentor espacial excede 50 vol. %. Entretanto, a literatura descreve que a melhor faixa de porosidade para implantes de titânio para coluna vertebral está entre 60 - 65 vol. %. Portanto, no presente estudo, duas abordagens foram conduzidas visando a produção de amostras altamente porosas através da combinação de MIM e SHM com o valor constante de retentor espacial de 70 vol. % e uma porosidade aberta na superfície. Na primeira abordagem, a quantidade ótima de retentor espacial foi investigada, para tal foram melhorados a homogeneização do feedstock e os parâmetros de processo com o propósito de permitir a injeção do feedstock. Na segunda abordagem, tratamento por plasma foi aplicado nas amostras antes da etapa final de sinterização. Ambas rotas resultaram na melhoria da estabilidade dimensional das amostras durante a extração térmica do ligante e sinterização, permitindo a sinterização de amostras de titânio altamente porosas sem deformação da estrutura.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cutting fluids are lubricants used in machining processes, because they present many benefits for different processes. They have many functions, such as lubrication, cooling, improvement in surface finishing, besides they decreases the tool wear and protect it against corrosion. Therefore due to new environment laws and demand to green products, new cutting fluids must be development. These shall be biodegradable, non-toxic, safety for environment and operator healthy. Thus, vegetable oils are a good option to solve this problem, replacing the mineral oils. In this context, this work aimed to develop an emulsion cutting fluid from epoxidized vegetable oil, promoting better lubrication and cooling in machining processes, besides being environment friendly. The methodology was divided in five steps: first one was the biolubricant synthesis by epoxidation reaction. Following this, the biolubricant was characterized in terms of density, acidity, iodo index, oxirane index, viscosity, thermal stability and chemical composition. The third step was to develop an emulsion O/A with different oil concentration (10, 20 and 25%) and surfactant concentration (1, 2.5 and 5%). Also, emulsion stability was studied. The emulsion tribological performance were carried out in HFRR (High Frequency Reciprocating Rig), it consists in ball-disc contact. Results showed that the vegetable based lubricant may be synthesized by epoxidationreaction, the spectra showed that there was 100% conversion of the epoxy rings unsaturations. In regard the tribological assessment is observed that the percentage of oil present in the emulsion directly influenced the film formation and coefficient of friction for higher concentrations the film formation process is slow and unstable, and the coefficient of friction. The high concentrations of surfactants have not improved the emulsions tribological performance. The best performance in friction reduction was observed to emulsion with 10% of oil and 5% of surfactant, its average wear scar was 202 μm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the treatment of wastewater from the textile industry, containing dyes as Yellow Novacron (YN), Red Remazol BR (RRB) and Blue Novacron CD (NB), and also, the treatment of wastewater from petrochemical industry (produced water) were investigated by anodic oxidation (OA) with platinum anodes supported on titanium (Ti/Pt) and boron-doped diamond (DDB). Definitely, one of the main parameters of this kind of treatment is the type of electrocatalytic material used, since the mechanisms and products of some anodic reactions depend on it. The OA of synthetic effluents containing with RRB, NB and YN were investigated in order to find the best conditions for the removal of color and organic content of the dye. According to the experimental results, the process of OA is suitable for decolorization of wastewaters containing these textile dyes due to electrocatalytic properties of DDB and Pt anodes. Removal of the organic load was more efficient at DDB, in all cases; where the dyes were degraded to aliphatic carboxylic acids at the end of the electrolysis. Energy requirements for the removal of color during OA of solutions of RRB, NB and YN depends mainly on the operating conditions, for example, RRB passes of 3.30 kWh m-3 at 20 mA cm-2 for 4.28 kWh m-3 at 60 mA cm-2 (pH = 1); 15.23 kWh m-3 at 20 mA cm-2 to 24.75 kWh m-3 at 60 mA cm-2 (pH 4.5); 10.80 kWh m-3 at 20 mA cm-2 to 31.5 kWh m-3 at 60 mA cm-2 (pH = 8) (estimated data for volume of treated effluent). On the other hand, in the study of OA of produced water effluent generated by petrochemical industry, galvanostatic electrolysis using DDB led to the complete removal of COD (98%), due to large amounts of hydroxyl radicals and peroxodisulphates generated from the oxidation of water and sulfates in solution, respectively. Thus, the rate of COD removal increases with increasing applied current density (15-60 mAcm-2 ). Moreover, at Pt electrode, approximately 50% removal of the organic load was achieved by applying from 15 to 30 mAcm-2 while 80% of COD removal was achieved for 60 mAcm-2 . Thus, the results obtained in the application of this technology were satisfactory depending on the electrocatalytic materials and operating conditions used for removal of organic load (petrochemical and textile effluents) as well as for the removal of color (in the case of textile effluents). Therefore, the applicability of electrochemical treatment can be considered as a new alternative like pretreatment or treatment of effluents derived from textiles and petrochemical industries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The distribution of diagenetic alterations in Late Cenomanian siliciclastic reservoirs from Potiguar Basin was influenced by the stratigraphic framework and the depositional system. Seismic sections and geophysical logs of two wells drilled in the SW portion of the mentioned basin above register regional stratigraphic surfaces representing maximum floods related to a transgressive event. The sequential analysis of 80 m of drill core (~450 m deep) recognized nine depositional facies with an upwards granodecrescent standard piling that limits cycles with an erosional conglomeratic base (lag) overlain by intercalations of medium to very fine sandstones showing cross bedding (channel, planar and low angled) and horizontal bedding (plane-parallel , wave and flaser). The top of the cycles is marked by the deposition of pelites and the development of paleosoils and lagoons. The correlation of genetically related facies reveals associations of channel fillings, crevasse, and flood plains deposited in a transgressive system. Detailed descriptions of seventy nine thin sections aided by MEV-EBSD/EDS, DRX and stable isotope analyses in sandstones revealed an arcosian composition and complex textural arrays with abundant smectite fringes continuously covering primary components, mechanically infiltrated cuticles and moldic and intragrain pores. K-feldspar epitaxial overgrowth covers microcline and orthoclase grains before any other phase. Abundant pseudomatrix due to the compactation of mud intraclasts concentrate along the stratification planes, locally replaced by macrocristalline calcite and microcrystalline and framboidal pyrite. Kaolinite (booklets and vermicular), microcrystalline smectite, microcrystalline titanium minerals and pyrite replace the primary components. The intergrain porosity prevails over the moldic, intragrain and contraction porosities. The pores are poorly connected due to the presence of intergranular smectite, k-feldspar overgrowth, infiltrated mud and pseudomatrix. The sandstones were subjected to eodiagenetic conditions next to the surface and shallow burial mesodiagenetic conditions. The diagenetic alterations reduced the porosity and the permeability mainly due to the precipitation of smectite fringes, compactation of mud intraclasts onto the pseudomatrix and cementing by poikilotopic calcite characterizing different reservoir petrofacies. These diagenetic products acted as barriers and detours to the flow of fluids thus reducing the quality of the reservoir.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The addition of hydrogen gas as an alternative fuel source has been widely used, as well reported in scientific literature. Today, several experiments are underway for the use of hydrogen generators (electrolysers) demand for motor vehicles. In all these products their ads manufacturers claim that this provides a reduction of fuel consumption, reduces the emission levels of toxic gas by the discharge and improves engine life. This research analyzes the physical structure of engine components using electrolysis on demand. To this end, a stationary system was fitted with a power generator of electricity, drum roller and adapted two electrolyzers: a dry cell and wet cell other. In steps observation were consumption analyzes in four work load ranges and observing the piston engine, which has been cut and analyzed by Optical Microscopy (OM), Scanning Electron Microscopy and Dispersive Energy (SEM-EDS), X – Ray Diffraction (XRD) and Confocal Microscopy, the stationary system in each step. The results showed a considerable reduction in fuel consumption and a high corrosion in the original factory piston constituted of aluminum-silicon alloy. As corrosion barrier was made a plasma nitriding in the piston head, which proved resistant to attack by hydrogen, although it has presented evidence also, of having been attacked. It is concluded that the automotive electrolysers can be a good choice in terms of consumption and reducing toxic gas emissions, but the material of the combustion chambers of vehicles must be prepared for this purpose.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrochemical technologies have been proposed as a promising alternative for the treatment of effluents and contaminated soils. Therefore, the objective of this work was to study the treatment of contaminated soils and wastewaters using electrochemical technologies. Thus, the study regarding the scale-up of the electrochemical system with continuous flow treatment of wastewater of the petrochemical industry was investigated using platinum electrodes supported on titanium (Ti / Pt), and boron-doped diamond (BDD). The results clearly showed that under the operating conditions studied and electrocatalytic materials employed, the better removal efficiency was achieved with BDD electrode reducing the chemical oxygen demand (COD) from 2746 mg L-1 to 200 mg L-1 in 5 h consuming 56.2 kWh m-3 . The decontamination of soils and effluents by petrochemical products was evaluated by studying the effects of electrokinetic remediation for removal of total petroleum hydrocarbons (HTP) from contaminated soil with diesel. The efficiency of this process was dependent on the electrolyte used Na2SO4 (96.46%), citric acid (81.36%) and NaOH (68.03%) for 15 days. Furthermore, the effluent after treatment of the soil was treated by electrochemical oxidation, achieving a good elimination of the organic polluting load dissolved. Depending on the physical behavior of wastewater contaminated with oil (emulsified state); atrazine emulsified effluents were investigated. The main characteristics of the effluent produced during the washing of contaminated soil were studied, being dependent on the surfactant dosage used; which determined its electrolytic treatment with BDD. The electrochemical oxidation of emulsified effluent of atrazine was efficient, but the key to the treatment is reducing the size of micelles.