166 resultados para Vazão
Resumo:
Household refrigerators are equipments that represent a significant portion on the eletricity consumption of Brazilian homes. The use of these devices with low energy efficiency contributes to increase the energy consumption. The energy efficiency of a refrigerator is a function of the interaction between the coolant fluid and the components of the thermodynamic cycle. Changes in load and/or nature of the coolant may modify the condensing and/or evaporation pressures. The volumetric capacity of the compressor, the mass flow of coolant and the compression power are dependent parameters of the condensation and evaporation pressures. Thus, the expansion devices exert an importante role in the balance of these pressures, being fundamental for the better performance of the refrigeration cycle. This experimental research aims to investigate the sensitivity of the performance parameters of a household refrigerator operating with R134a and at different evaporation pressures. Therefore, a small refrigerator was instrumented with temperature, pressure sensors and other variables of interest, installed along the cooling circuit, in order to allow the thermal mapping and the evaluation of the equipment performance parameters. The variation of pressure loss in the coolant fluid resulting from the operation of the expansion valve with micrometric adjustment that modifies the evaporation temperature, influencing significantly the performance parameters of the thermodynamic refrigeration cycle.
Resumo:
In the Oil industry, oil and gas pipelines are commonly utilized to perform the transportation of production fluids to longer distances. The maintenance of the pipelines passes through the analysis of several tools, in which the most currently used are the pipelines inspection cells, popularly knowing as PIG. Among the variants existing in the market, the instrumented PIG has a significant relevance; acknowledging that through the numerous sensors existing in the equipment, it can detect faults or potential failure along the inspected line. Despite its versatility, the instrumented PIG suffers from speed variations, impairing the reading of sensors embedded in it. Considering that PIG moves depending on the speed of the production fluid, a way to control his speed is to control the flow of the fluid through the pressure control, reducing the flow rate of the produced flow, resulting in reduction of overall production the fluid in the ducts own or with the use of a restrictive element (valve) installed on it. The characteristic of the flow rate/pressure drop from restrictive elements of the orifice plate is deducted usually from the ideal energy equation (Bernoulli’s equation) and later, the losses are corrected normally through experimental tests. Thus, with the objective of controlling the fluids flow passing through the PIG, a valve shutter actuated by solenoid has been developed. This configuration allows an ease control and stabilization of the flow adjustment, with a consequent response in the pressure drops between upstream and downstream of the restriction. It was assembled a test bench for better definition of flow coefficients; composed by a duct with intern diameter of four inches, one set of shutters arranged in a plate and pressure gauges for checking the pressure drop in the test. The line was pressurized and based on the pressure drop it was possible to draw a curve able to characterize the flow coefficient of the control valve prototype and simulate in mockup the functioning, resulting in PIG speed reduction of approximately 68%.
Resumo:
The stabilization of energy supply in Brazil has been a challenge for the operation of the National Interconnected System in face of hydrological and climatic variations. Thermoelectric plants have been used as an emergency source for periods of water scarcity. The utilization of fossil fuels, however, has elevated the cost of electricity. On the other hand, offshore wind energy has gained importance in the international context and is competitive enough to become a possibility for future generation in Brazil. In this scenario, the main goal of this thesis was to investigate the magnitude and distribution of offshore wind resources, and also verify the possibilities of complementing hydropower. A data series of precipitation from the Climatic Research Unit (CRU) Blended Sea Winds from the National Climatic Data Center (NCDC/NOAA) were used. According to statistical criteria, three types of complementarity were found in the Brazilian territory: hydro × hydro, wind × wind and hydro × wind. It was noted a significant complementarity between wind and hydro resources (r = -0.65), mainly for the hydrographical basins of the southeast and central regions with Northeastern Brazil winds. To refine the extrapolation of winds over the ocean, a method based on the Monin-Obukhov theory was used to model the stability of the atmospheric boundary layer. Objectively Analyzed Air-Sea Flux (OAFLUX) datasets for heat flux, temperature and humidity, and also sea level pressure data from NCEP/NCAR were used. The ETOPO1 from the National Geophysical Data Center (NGDC/NOAA) provided bathymetric data. It was found that shallow waters, between 0-20 meters, have a resource estimated at 559 GW. The contribution of wind resources to hydroelectric reservoir operation was investigated with a simplified hybrid wind-hydraulic model, and reservoir level, inflow, outflow and turbine production data. It was found that the hybrid system avoids drought periods, continuously saving water from reservoirs through wind production. Therefore, from the results obtained, it is possible to state that the good winds from the Brazilian coast can, besides diversifying the electric matrix, stabilize the hydrological fluctuations avoiding rationing and blackouts, reducing the use of thermal power plants, increasing the production cost and emission of greenhouse gases. Public policies targeted to offshore wind energy will be necessary for its full development.
Resumo:
Water injection in oil reservoirs is a recovery technique widely used for oil recovery. However, the injected water contains suspended particles that can be trapped, causing formation damage and injectivity decline. In such cases, it is necessary to stimulate the damaged formation looking forward to restore the injectivity of the injection wells. Injectivity decline causes a major negative impact to the economy of oil production, which is why, it is important to foresee the injectivity behavior for a good waterflooding management project. Mathematical models for injectivity losses allow studying the effect of the injected water quality, also the well and formation characteristics. Therefore, a mathematical model of injectivity losses for perforated injection wells was developed. The scientific novelty of this work relates to the modeling and prediction of injectivity decline in perforated injection wells, considering deep filtration and the formation of external cake in spheroidal perforations. The classic modeling for deep filtration was rewritten using spheroidal coordinates. The solution to the concentration of suspended particles was obtained analytically and the concentration of the retained particles, which cause formation damage, was solved numerically. The acquisition of the solution to impedance assumed a constant injection rate and the modified Darcy´s Law, defined as being the inverse of the normalized injectivity by the inverse of the initial injectivity. Finally, classic linear flow injectivity tests were performed within Berea sandstone samples, and within perforated samples. The parameters of the model, filtration and formation damage coefficients, obtained from the data, were used to verify the proposed modeling. The simulations showed a good fit to the experimental data, it was observed that the ratio between the particle size and pore has a large influence on the behavior of injectivity decline.
Resumo:
A type of macro drainage solution widely used in urban areas with predomi-nance of closed catchments (basins without outlet) is the implementation of detention and infiltration reservoirs (DIR). This type of solution has the main function of storing surface runoff and to promote soil infiltration and, consequently, aquifer recharge. The practice is to avoid floods in the drainage basin low-lying areas. The catchment waterproofing reduces the distributed groundwater recharge in urban areas, as is the case of Natal city, RN. However, the advantage of DIR is to concentrate the runoff and to promote aquifer recharge to an amount that can surpass the distributed natu-ral recharge. In this paper, we proposed studying a small urban drainage catchment, named Experimental Mirassol Watershed (EMW) in Natal, RN, whose outlet is a DIR. The rainfall-runoff transformation processes, water accumulation in DIR and the pro-cess of infiltration and percolation in the soil profile until the free aquifer were mod-eled and, from rainfall event observations, water levels in DIR and free aquifer water level measurements, and also, parameter values determination, it is was enabled to calibrate and modeling these combined processes. The mathematical modeling was carried out from two numerical models. We used the rainfall-runoff model developed by RIGHETTO (2014), and besides, we developed a one-dimensional model to simu-late the soil infiltration, percolation, redistribution soil water and groundwater in a combined system to the reservoir water balance. Continuous simulation was run over a period of eighteen months in time intervals of one minute. The drainage basin was discretized in blocks units as well as street reaches and the soil profile in vertical cells of 2 cm deep to a total depth of 30 m. The generated hydrographs were transformed into inlet volumes to the DIR and then, it was carried out water balance in these time intervals, considering infiltration and percolation of water in the soil profile. As a re-sult, we get to evaluate the storage water process in DIR as well as the infiltration of water, redistribution into the soil and the groundwater aquifer recharge, in continuous temporal simulation. We found that the DIR has good performance to storage excess water drainage and to contribute to the local aquifer recharge process (Aquifer Dunas / Barreiras).
Resumo:
The uncontrolled disposal of wastewaters containing phenolic compounds by the industry has caused irreversible damage to the environment. Because of this, it is now mandatory to develop new methods to treat these effluents before they are disposed of. One of the most promising and low cost approaches is the degradation of phenolic compounds via photocatalysis. This work, in particular, has as the main goal, the customization of a bench scale photoreactor and the preparation of catalysts via utilization of char originated from the fast pyrolysis of sewage sludge. The experiments were carried out at constant temperature (50°C) under oxygen (410, 515, 650 and 750 ml min-1). The reaction took place in the liquid phase (3.4 liters), where the catalyst concentration was 1g L-1 and the initial concentration of phenol was 500 mg L-1 and the reaction time was set to 3 hours. A 400 W lamp was adapted to the reactor. The flow of oxygen was optimized to 650 ml min-1. The pH of the liquid and the nature of the catalyst (acidified and calcined palygorskite, palygorskite impregnated with 3.8% Fe and the pyrolysis char) were investigated. The catalytic materials were characterized by XRD, XRF, and BET. In the process of photocatalytic degradation of phenol, the results showed that the pH has a significant influence on the phenol conversion, with best results for pH equal to 5.5. The phenol conversion ranged from 51.78% for the char sewage sludge to 58.02% (for palygorskite acidified calcined). Liquid samples analyzed by liquid chromatography and the following compounds were identified: hydroquinone, catechol and maleic acid. A mechanism of the reaction was proposed, whereas the phenol is transformed into the homogeneous phase and the others react on the catalyst surface. For the latter, the Langmuir-Hinshelwood model was applied, whose mass balances led to a system of differential equations and these were solved using numerical methods in order to get estimates for the kinetic and adsorption parameters. The model was adjusted satisfactorily to the experimental results. From the proposed mechanism and the operating conditions used in this study, the most favored step, regardless of the catalyst, was the acid group (originated from quinone compounds), being transformed into CO2 and water, whose rate constant k4 presented value of 0.578 mol L-1 min-1 for acidified calcined palygorskite, 0.472 mol L-1 min-1 for Fe2O3/palygorskite and 1.276 mol L-1 min-1 for the sludge to char, the latter being the best catalyst for mineralization of acid to CO2 and water. The quinones were adsorbed to the acidic sites of the calcined palygorskite and Fe2O3/palygorskite whose adsorption constants were similar (~ 4.45 L mol-1) and higher than that of the sewage sludge char (3.77 L mol-1).
Resumo:
The uncontrolled disposal of wastewaters containing phenolic compounds by the industry has caused irreversible damage to the environment. Because of this, it is now mandatory to develop new methods to treat these effluents before they are disposed of. One of the most promising and low cost approaches is the degradation of phenolic compounds via photocatalysis. This work, in particular, has as the main goal, the customization of a bench scale photoreactor and the preparation of catalysts via utilization of char originated from the fast pyrolysis of sewage sludge. The experiments were carried out at constant temperature (50°C) under oxygen (410, 515, 650 and 750 ml min-1). The reaction took place in the liquid phase (3.4 liters), where the catalyst concentration was 1g L-1 and the initial concentration of phenol was 500 mg L-1 and the reaction time was set to 3 hours. A 400 W lamp was adapted to the reactor. The flow of oxygen was optimized to 650 ml min-1. The pH of the liquid and the nature of the catalyst (acidified and calcined palygorskite, palygorskite impregnated with 3.8% Fe and the pyrolysis char) were investigated. The catalytic materials were characterized by XRD, XRF, and BET. In the process of photocatalytic degradation of phenol, the results showed that the pH has a significant influence on the phenol conversion, with best results for pH equal to 5.5. The phenol conversion ranged from 51.78% for the char sewage sludge to 58.02% (for palygorskite acidified calcined). Liquid samples analyzed by liquid chromatography and the following compounds were identified: hydroquinone, catechol and maleic acid. A mechanism of the reaction was proposed, whereas the phenol is transformed into the homogeneous phase and the others react on the catalyst surface. For the latter, the Langmuir-Hinshelwood model was applied, whose mass balances led to a system of differential equations and these were solved using numerical methods in order to get estimates for the kinetic and adsorption parameters. The model was adjusted satisfactorily to the experimental results. From the proposed mechanism and the operating conditions used in this study, the most favored step, regardless of the catalyst, was the acid group (originated from quinone compounds), being transformed into CO2 and water, whose rate constant k4 presented value of 0.578 mol L-1 min-1 for acidified calcined palygorskite, 0.472 mol L-1 min-1 for Fe2O3/palygorskite and 1.276 mol L-1 min-1 for the sludge to char, the latter being the best catalyst for mineralization of acid to CO2 and water. The quinones were adsorbed to the acidic sites of the calcined palygorskite and Fe2O3/palygorskite whose adsorption constants were similar (~ 4.45 L mol-1) and higher than that of the sewage sludge char (3.77 L mol-1).
Resumo:
With an increasing number of mature fields, heavy oil recovery has performed one of the great challenges of the oil industry. The Brazilian Northeast, for example, has numerous heavy oil reservoirs are explored with the use of thermal methods. Among the types of methods used for heavy oil, there is the method of in-situ combustion, a technique in which heat is produced within the container, unlike the injection of heated fluid when the heat is generated at the surface and transported to the reservoir. In this type of process, it is common to use vertical wells as injectors and producers. However, methods which use horizontal wells like oil producers are increasingly studied because of greater contact area between the formation and combustion front. Thus, the main objective of this work was to study the different configurations of wells (CIS THAITM and CAGD) in the process of in-situ combustion in oil recovery using a semi-synthetic tank with Brazilian Northeast features. The method "toe-to-heel air injection" (THAITM) is a process of enhanced oil recovery, which is the integration of in-situ combustion with technological advances in drilling horizontal wells. This method uses horizontal wells such as oil producers, keeping vertical injection wells for injecting air. The oil drain process by differential gravitational assisted with combustion (CAGD) is an integrated, in this configuration the horizontal injector well is drilled at the top formation with a horizontal production well in the lower section. The simulations were performed in a commercial program of thermal processes, called "STARS" (Steam, Thermal, and Advanced Processes Reservoir Simulator), the company CMG (Computer Modelling Group). An analysis of the air flow injection was performed and it was found that each method had a maximum injection to the base model, a show that through this air injection limit was reduced cumulative production of oil. Analyses of operating parameters were used: injection flow, configuration and completion of wells. In the sensitivity analysis we found that the air injection flow showed greater influence on THAI method, since the CIS method the completion of the wells was the most influential parameter and CAGD configuration wells showed the greatest influence in the recovered fraction. The economic results have shown that the best case obtained in CAGD method because, despite having higher initial cost showed the best financial return compared to the best cases the CIS and THAI.
Resumo:
With an increasing number of mature fields, heavy oil recovery has performed one of the great challenges of the oil industry. The Brazilian Northeast, for example, has numerous heavy oil reservoirs are explored with the use of thermal methods. Among the types of methods used for heavy oil, there is the method of in-situ combustion, a technique in which heat is produced within the container, unlike the injection of heated fluid when the heat is generated at the surface and transported to the reservoir. In this type of process, it is common to use vertical wells as injectors and producers. However, methods which use horizontal wells like oil producers are increasingly studied because of greater contact area between the formation and combustion front. Thus, the main objective of this work was to study the different configurations of wells (CIS THAITM and CAGD) in the process of in-situ combustion in oil recovery using a semi-synthetic tank with Brazilian Northeast features. The method "toe-to-heel air injection" (THAITM) is a process of enhanced oil recovery, which is the integration of in-situ combustion with technological advances in drilling horizontal wells. This method uses horizontal wells such as oil producers, keeping vertical injection wells for injecting air. The oil drain process by differential gravitational assisted with combustion (CAGD) is an integrated, in this configuration the horizontal injector well is drilled at the top formation with a horizontal production well in the lower section. The simulations were performed in a commercial program of thermal processes, called "STARS" (Steam, Thermal, and Advanced Processes Reservoir Simulator), the company CMG (Computer Modelling Group). An analysis of the air flow injection was performed and it was found that each method had a maximum injection to the base model, a show that through this air injection limit was reduced cumulative production of oil. Analyses of operating parameters were used: injection flow, configuration and completion of wells. In the sensitivity analysis we found that the air injection flow showed greater influence on THAI method, since the CIS method the completion of the wells was the most influential parameter and CAGD configuration wells showed the greatest influence in the recovered fraction. The economic results have shown that the best case obtained in CAGD method because, despite having higher initial cost showed the best financial return compared to the best cases the CIS and THAI.
Resumo:
Vegetable oils are characterized as important raw materials in the supplying of natural substances of interest pharmaceutical, food and cosmetic industry. Sunflower oil stands out for its important composition present in unsaturated fatty acids such as oleic acid (C18:1) and linoleic (C18:2), responsible for many health benefits. The main objective of this study is obtain enriched fractions in unsaturated compounds from refined sunflower oil. The oil used in this study was characterized by the determination of some properties, like iodine number, acid number and viscosity. A transesterification was done to transform the triglycerides into their corresponding methyl esters of fatty acids. These was submitted the molecular distillation process, for present as an efficient alternative to separation and purification of these substances, using high vacuum and low temperatures. Of the esters fractions that was obtained, were analyzed by gas chromatography. The experimental design technique was used to evaluate the influence of the temperature variation of evaporation and condensation system on the percentage obtained residue. The evaporator temperature proved to be the most influential variable on the studied response. The optimized conditions for the answer was studied at 100 °C for evaporator temperature and 10 °C for the condenser temperature. The graph of "split ratio" showed that for the lowest flow feed (1 mL/min) and higher evaporator temperature (110 °C) was obtained in the largest fraction of distillate. It also used the study of the influence of evaporator temperature on the concentration of unsaturated compounds. The best operating conditions for temperature was 90 °C reached 82.21 % of unsaturated compounds. Elimination curves of the unsaturated compounds present in the distillate stream were obtained. The simulation results of the molecular distillation process of sunflower oil showed the concentration profiles for three different feed flow rates. The speed, temperature and thickness profiles of the liquid film were obtained. The speed of the film increases as the fluid flows through the walls of the evaporator, reaching a maximum on length of 0.075 m. The film thickness decreases on the route, since many compounds are volatilized. The result of the temperature profile had to be consistent with the literature reproduced, being constant after reaching the maximum operating temperature in the length of 0.15 m. This study allowed characterizing and focusing, through experimental analysis, unsaturated compounds and observing the sunflower oil´s behavior through process simulation.
Resumo:
Vegetable oils are characterized as important raw materials in the supplying of natural substances of interest pharmaceutical, food and cosmetic industry. Sunflower oil stands out for its important composition present in unsaturated fatty acids such as oleic acid (C18:1) and linoleic (C18:2), responsible for many health benefits. The main objective of this study is obtain enriched fractions in unsaturated compounds from refined sunflower oil. The oil used in this study was characterized by the determination of some properties, like iodine number, acid number and viscosity. A transesterification was done to transform the triglycerides into their corresponding methyl esters of fatty acids. These was submitted the molecular distillation process, for present as an efficient alternative to separation and purification of these substances, using high vacuum and low temperatures. Of the esters fractions that was obtained, were analyzed by gas chromatography. The experimental design technique was used to evaluate the influence of the temperature variation of evaporation and condensation system on the percentage obtained residue. The evaporator temperature proved to be the most influential variable on the studied response. The optimized conditions for the answer was studied at 100 °C for evaporator temperature and 10 °C for the condenser temperature. The graph of "split ratio" showed that for the lowest flow feed (1 mL/min) and higher evaporator temperature (110 °C) was obtained in the largest fraction of distillate. It also used the study of the influence of evaporator temperature on the concentration of unsaturated compounds. The best operating conditions for temperature was 90 °C reached 82.21 % of unsaturated compounds. Elimination curves of the unsaturated compounds present in the distillate stream were obtained. The simulation results of the molecular distillation process of sunflower oil showed the concentration profiles for three different feed flow rates. The speed, temperature and thickness profiles of the liquid film were obtained. The speed of the film increases as the fluid flows through the walls of the evaporator, reaching a maximum on length of 0.075 m. The film thickness decreases on the route, since many compounds are volatilized. The result of the temperature profile had to be consistent with the literature reproduced, being constant after reaching the maximum operating temperature in the length of 0.15 m. This study allowed characterizing and focusing, through experimental analysis, unsaturated compounds and observing the sunflower oil´s behavior through process simulation.
Resumo:
Untreated effluents that reach surface water affect the aquatic life and humans. This study aimed to evaluate the wastewater s toxicity (municipal, industrial and shrimp pond effluents) released in the Estuarine Complex of Jundiaí- Potengi, Natal/RN, through chronic quantitative e qualitative toxicity tests using the test organism Mysidopsis Juniae, CRUSTACEA, MYSIDACEA (Silva, 1979). For this, a new methodology for viewing chronic effects on organisms of M. juniae was used (only renewal), based on another existing methodology to another testorganism very similar to M. Juniae, the M. Bahia (daily renewal).Toxicity tests 7 days duration were used for detecting effects on the survival and fecundity in M. juniae. Lethal Concentration 50% (LC50%) was determined by the Trimmed Spearman-Karber; Inhibition Concentration 50% (IC50%) in fecundity was determined by Linear Interpolation. ANOVA (One Way) tests (p = 0.05) were used to determinate the No Observed Effect Concentration (NOEC) and Low Observed Effect Concentration (LOEC). Effluents flows were measured and the toxic load of the effluents was estimated. Multivariate analysis - Principal Component Analysis (PCA) and Correspondence Analysis (CA) - identified the physic-chemical parameters better explain the patterns of toxicity found in survival and fecundity of M. juniae. We verified the feasibility of applying the only renewal system in chronic tests with M. Juniae. Most efluentes proved toxic on the survival and fecundity of M. Juniae, except for some shrimp pond effluents. The most toxic effluent was ETE Lagoa Aerada (LC50, 6.24%; IC50, 4.82%), ETE Quintas (LC50, 5.85%), Giselda Trigueiro Hospital (LC50, 2.05%), CLAN (LC50, 2.14%) and COTEMINAS (LC50, IC50 and 38.51%, 6.94%). The greatest toxic load was originated from ETE inefficient high flow effluents, textile effluents and CLAN. The organic load was related to the toxic effects of wastewater and hospital effluents in survival of M. Juniae, as well as heavy metals, total residual chlorine and phenols. In industrial effluents was found relationship between toxicity and organic load, phenols, oils and greases and benzene. The effects on fertility were related, in turn, with chlorine and heavy metals. Toxicity tests using other organisms of different trophic levels, as well as analysis of sediment toxicity are recommended to confirm the patterns found with M. Juniae. However, the results indicate the necessity for implementation and improvement of sewage treatment systems affluent to the Potengi s estuary
Resumo:
The larval instars, seasonal occurrence and environmental factors influence on Psaroniocompsa incrustata (Lutz, 1910) (Diptera: Simuliidae) immature were studied according to its physical and chemical aspects of breeding water. Four collects were made at vegetal substrate from margin, middle and floating on the Pium river, city of Nísia Floresta, state of Rio Grande do Norte, Brazil at dry and wet season. Some of larval characters were used to determinate the larval instars number like lateral length of cephalic capsulae, antennae and the distance among cephalic apodema, as well as pH, water temperature, width, depth, stream velocity, discharge and pluviometric precipitation were used for physical factors. Seven larval instars were determined for this P. incrustata community being the lateral length of cephalic capsulae as the best structure with this meaning propose. The seasonality immature abundance of this species were found in dry season and a positive correlation with pH, stream velocity and precipitation
Resumo:
The behavior of the fluid flux in oil fields is influenced by different factors and it has a big impact on the recovery of hydrocarbons. There is a need of evaluating and adapting the actual technology to the worldwide reservoirs reality, not only on the exploration (reservoir discovers) but also on the development of those that were already discovered, however not yet produced. The in situ combustion (ISC) is a suitable technique for these recovery of hydrocarbons, although it remains complex to be implemented. The main objective of this research was to study the application of the ISC as an advanced oil recovery technique through a parametric analysis of the process using vertical wells within a semi synthetic reservoir that had the characteristics from the brazilian northwest, in order to determine which of those parameters could influence the process, verifying the technical and economical viability of the method on the oil industry. For that analysis, a commercial reservoir simulation program for thermal processes was used, called steam thermal and advanced processes reservoir simulator (STARS) from the computer modeling group (CMG). This study aims, through the numerical analysis, find results that help improve mainly the interpretation and comprehension of the main problems related to the ISC method, which are not yet dominated. From the results obtained, it was proved that the mediation promoted by the thermal process ISC over the oil recovery is very important, with rates and cumulated production positively influenced by the method application. It was seen that the application of the method improves the oil mobility as a function of the heating when the combustion front forms inside the reservoir. Among all the analyzed parameters, the activation energy presented the bigger influence, it means, the lower the activation energy the bigger the fraction of recovered oil, as a function of the chemical reactions speed rise. It was also verified that the higher the enthalpy of the reaction, the bigger the fraction of recovered oil, due to a bigger amount of released energy inside the system, helping the ISC. The reservoir parameters: porosity and permeability showed to have lower influence on the ISC. Among the operational parameters that were analyzed, the injection rate was the one that showed a stronger influence on the ISC method, because, the higher the value of the injection rate, the higher was the result obtained, mainly due to maintaining the combustion front. In connection with the oxygen concentration, an increase of the percentage of this parameter translates into a higher fraction of recovered oil, because the quantity of fuel, helping the advance and the maintenance of the combustion front for a longer period of time. About the economic analysis, the ISC method showed to be economically feasible when evaluated through the net present value (NPV), considering the injection rates: the higher the injection rate, the higher the financial incomes of the final project
Resumo:
Steam injection is the most used method of additional recovery for the extraction of heavy oil. In this type procedure is common to happen gravitational segregation and this phenomenon can affect the production of oil and therefore, it shoulds be considered in the projects of continuous steam injection. For many years, the gravitational segregation was not adequately considered in the calculation procedures in Reservoir Engineering. The effect of the gravity causes the segregation of fluids inside the porous media according to their densities. The results of simulation arising from reservoirs could provide the ability to deal with the gravity, and it became apparent that the effects of the gravity could significantly affect the performance of the reservoir. It know that the gravitational segregation can happen in almost every case where there is injection of light fluid, specially the steam, and occurs with greater intensity for viscous oil reservoirs. This work discusses the influence of some parameters of the rock-reservoir in segregation as viscosity, permeability, thickness, cover gas, porosity. From a model that shows the phenomenon with greater intensity, optimized some operational parameters as the rate flow rate steam, distance between the wells injector-producer, and interval of completion which contributed to the reduction in gravity override, thus increasing the oil recovery. It was shown a greater technical-economic viability for the model of distance between the wells 100 m. The analysis was performed using the simulator of CMG (Computer Modeling Group-Stars 2007.11, in which was observed by iterating between studied variables in heavy oil reservoirs with similar characteristics to Brazilian Northeast