195 resultados para Metais-traço


Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the objective to promote sustainable development, the fibres found in nature in abundance, which are biodegradable, of low cost in comparison to synthetic fibres are being used in the manufacture of composites. The mechanical behavior of the curauá and pineapple leaf fibre (PALF) composites in different proportions, 25% x 75% (P1), 50% x 50% (P2) e 75% x 25% (P3) were respectively studied, being initially treated with a 2% aqueous solution of sodium hydroxide. Mechanical analyses indicated that with respect to studies of traction, for the combination of P1 and P3, better results of 22.17 MPa and 16.98 MPa, were obtained respectively, which are higher than that of the combination P2. The results of the same pattern were obtained for analysis of bending resistance where P1 is 1.21% and P3 represents 0.96%. In the case of resistance to bending, best results were obtained for the combination P1 at 49.07 MPa. However, when Young's modulus values were calculated, the values were different to the pattern of the results of other tests, where the combination P2 with the value of 4.06 GPa is greater than the other combinations. This shows that the PALF had a greater influence in relation to curauá fibre. The analysis of the results generally shows that in combinations of two vegetable fibers of cellulosic origin, the fiber which shows higher percentage (75%) is the best option than to the composition of 50%/50%. In the meantime, according to the results obtained in this study, in the case where the application should withstand bending loads, the better composition would be 50%/50%

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is analyzed through the concepts of tribology and mechanical contact and damage the suggestion of implementing a backup system for traction and passage of Pipeline Inspection Gauge (Pig) from the inside of pipelines. In order to verify the integrity of the pipelines, it is suggested the possibility of displacement of such equipment by pulling wires with steel wires. The physical and mechanical characteristics of this method were verified by accelerated tests in the laboratory in a tribological pair, wire versus a curve 90. It also considered the main mechanisms of wear of a sliding system with and without lubricant, in the absence and presence of contaminants. To try this, It was constructed a test bench able to reproduce a slip system, work on mode back-and-forth ("reciprocation"). It was used two kinds of wires, a galvanized steel and other stainless steel and the results achieved using the two kinds of steel cables were compared. For result comparative means, it was used steel cables with and without coating of Poly Vinyl Chloride (PVC). The wires and the curves of the products were characterized using metallographic analysis, microhardness Vickers tests, X-ray diffraction (XRD), X-Ray Refraction (XRF) and tensile tests. After the experiments were analyzed some parameters that have been measurable, it demonstrates to the impracticality of this proposed method, since the friction force and the concept of alternating request at the contact between the strands of wire and the inner curves that are part ducts caused severe wear. These types of wear are likely to cause possible failures in future products and cause fluid leaks

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research presents an approach to the addition of curauá fibers and licuri fibers in a polypropylene resin matrix, such as an alternative proposal to reinforce the polymeric composites. Fiber content of 0 %, 5 %, 10 %, and 20% were analyzed for verification of their mechanical properties comparing them, inclusive with the properties of polypropylene. The grainulated biocomposites had been prepared in an extrusora. The test bodies had been molded by injection and submitted to the mechanical essays uniaxial traction, flexion on three points, impact, in addition to thermal tests (HDT). These biocomposites had been also subjected the essay physicist-chemistry index of fluidity (IF). It was observed that the biocomposites of PP with 20% curauá, obtained bigger increase in the modulus of elasticity and a bigger reduction in the resistance to the impact. In the mechanical behavior, for all the biocomposites, these were increases in values of the limit of drainage and tension of rupture, when tested by uniaxial traction, as they added the fibers. Another important point was the increase of the resistance the flexion. It was also noted that the addition of fibers reduced the thermal degradation of the mixture natural fibers / polypropylene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research work is based, in search of reinforcement s vegetable alternative to polymer composites. The idealization of making a hybrid composite reinforced with vegetable fibers licuri with synthetic fibers is a pioneer in this area. Thus was conceived a hybrid composite laminate consisting of 05 (five) layers being 03 (three) webs of synthetic fibers of glass and E-02 (two) unidirectional fabrics of vegetable fibers licuri. In the configuration of the laminate layers have alternating distribution. The composite laminate was manufactured in Tecniplas Commerce & Industry LTD, in the form of a card through the manufacturing process of hand lay up. Licuri fibers used in making the foil were the City of Mare Island in the state of Bahia. After cooking and the idealization of the hybrid composite laminate, the objective of this research work has focused on evaluating the performance of the mechanical properties (ultimate strength, stiffness and elongation at break) through uniaxial tensile tests and three point bending. Comparative studies of the mechanical properties and as well as among other types of laminated hybrid composites studied previously, were performed. Promising results were found with respect to the mechanical properties of strength and stiffness to the hybridization process idealized here. To complement the entire study were analyzed in terms of macroscopic and microscopic characteristics of the fracture for all tests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composite materials have a wide application in various sectors, such as the medical field in the manufacture of prostheses, in automotive and aerospace. Thus it is essential to the development of new composite and a better understanding in the face of various loading conditions and service. Several structural elements are manufactured in the presence of geometric discontinuity (notch, hole, etc ) in their longitudinal sections and/or cross-cutting, and these affect the mechanical response of these elements. The objective is to study the mechanical response of laminated polymer matrix hybrid composites reinforced with glass fiber/jute in a uniaxial tensile test. The mechanical response takes in account both the influence of the presence of a geometric discontinuity (semicircular notches) and the orientation of fibers in the layers (anisotropy). The semicircular notches are located in longitudinal section (with a reduction in cross section) of the same. In this analysis, the anisotropy is characterized by types of configurations (with different orientations of fibers in the outer layers). A comparative study of mechanical properties with and without the presence of notches is developed. Both configurations consist of four layers of woven jute fiber bidirectional and a central layer of bidirectional woven glass fibers. In addition to the mechanical properties was also studied the characteristics of the fracture developed in each composite laminate. The results showed that in the comparative study, the anisotropy and the presence of semicircular notches directly influences the mechanical behavior of laminates composites, mainly in reducing the tensile strength, and well as the final characteristics of the fracture

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wear mechanisms and thermal history of two non-conforming sliding surfaces was investigated in laboratory. A micro-abrasion testing setup was used but the traditional rotative sphere method was substituted by a cylindrical surface of revolution which included seven sharp angles varying between 15o to 180o. The micro-abrasion tests lead to the investigation on the polyurethane response at different contact pressures. For these turned counterfaces with and without heat treatment. Normal load and sliding speeds were changed. The sliding distance was fixed at 5 km in each test. The room and contact temperatures were measured during the tests. The polyurethane was characterized using tensile testing, hardness Shore A measurement, Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and Thermomechanical Analyze (TMA). The Vickers micro-hardness of the steel was measured before and after the heat treatment and the metallographic characterization was also carried out. Worn surface of polyurethane was analysed using Scanning Electron Microscope (SEM) and EDS (Electron Diffraction Scanning) microanalyses. Single pass scratch testing in polyurethane using indenters with different contact angles was also carried out. The scar morphology of the wear, the wear mechanism and the thermal response were analyzed in order to correlate the conditions imposed by the pressure-velocity pair to the materials in contact. Eight different wear mechanisms were identified on the polyurethane surface. It was found correlation between the temperature variation and the wear scar morphology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Materials denominated technical textiles can be defined as structures designed and developed with function to fulfill specific functional requirements of various industrial sectors as are the cases of the automotive and aerospace industries. In this aspect the technical textiles are distinguished from conventional textile materials, in which the aesthetic and of comfort needs are of primordial importance. Based on these considerations, the subject of this dissertation was established having as its main focus the study of development of textile structures from aramid and glass fibers and acting in order to develop the manufacture of composite materials that combine properties of two different structures, manufactured in an identical operation, where each structure contributes to improving the properties of the resulting composite material. Therefore were created in laboratory scale, textile structures with low weight and different composition: aramid (100%), glass (100%) and aramid /glass (65/35%), in order to use them as a reinforcing element in composite materials with polyester matrix. These composites were tested in tension and its fracture surface, evaluated by MEV. Based on the analysis of mechanical properties of the developed composites, the efficiency of the structures prepared as reinforcing element were testified by reason of that the resistance values of the composites are far superior to the polyester matrix. It was also observed that hybridization in tissue structure was efficient, since the best results obtained were for hybrid composites, where strength to the rupture was similar to the steel 1020, reaching values on the order of 340 MPa

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The growing demand in the use of hybrid composite materials makes it essential a better understanding of their behavior face of various design conditions, such as the presence of geometric discontinuities in the cross section of structural elements. This way, the purpose of this dissertation is a study of the mechanical response (strength and stiffness), modes (characteristics) of fracture and Residual Strength of an hybrid polymeric composite with and without a geometric discontinuity in its longitudinal section (with a reduction in the cross section) loaded by uniaxial tension. This geometric discontinuity is characterized by central holes of different diameters. The hybrid composite was fabricated as laminate (plate) and consisting of ortho-tereftalic polyester matrix reinforced by 04 outer layers of Jute fibers bidirectional fabrics and 01 central layer of E-glass bidirectional fabric. The laminate was industrially manufactured (Tecniplas Nordeste Indústria e Comércio Ltda.), obtained by the hand lay-up technique. Initially, a study of the volumetric density of the laminate was made in order to verify its use in lightweight structures. Also were performed comparative studies on the mechanical properties and fracture modes under the conditions of the specimens without the central hole and with the different holes. For evaluating the possible influence of the holes in the structural stability of the laminate, the Residual Strength of the composite was determined for each case of variation in hole diameter. As a complementary study, analyses of the macroscopic final fracture characteristic of the laminates were developed. The presence of the central hole of any sizes, negatively changed the ultimate tensile strength. Regarding the elastic modulus, moreover, the difference found between the specimens was within the range of tests displacement, showing the laminate stability related to the stiffness

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Concern for the environment and the exploitation of natural resources has motivated the development of research in lignocellulosic materials, mainly from plant fibers. The major attraction of these materials include the fact that the fibers are biodegradable, they are a renewable natural resource, low cost and they usually produce less wear on equipment manufacturing when compared with synthetic fibers. Its applications are focused on the areas of technology, including automotive, aerospace, marine, civil, among others, due to the advantageous use in economic and ecological terms. Therefore, this study aims to characterize and analyze the properties of plant fiber macambira (bromelia laciniosa), which were obtained in the municipality of Ielmo Marino, in the state of Rio Grande do Norte, located in the region of the Wasteland Potiguar. The characterization of the fiber is given by SEM analysis, tensile test, TG, FTIR, chemical analysis, in addition to obtaining his title and density. The results showed that the extraction of the fibers, only 0.5% of the material is converted into fibers. The results for title and density were satisfactory when compared with other fibers of the same nature. Its structure is composed of microfibrils and its surface is roughened. The cross section has a non-uniform geometry, therefore, it is understood that its diameter is variable along the entire fiber. Values for tensile strength were lower than those of sisal fibers and curauá. The degradation temperature remained equivalent to the degradation temperatures of other vegetable fibers. In FTIR analysis showed that the heat treatment may be an alternative to making the fiber hydrophobic, since, at high temperature can remove the hemicellulose layer, responsible for moisture absorption. Its chemical constitution is endowed with elements of polar nature, so their moisture is around 8.5% which is equivalent to the percentage of moisture content of hydrophilic fibers. It can be concluded that the fiber macambira stands as an alternative materials from renewable sources and depending on the actual application and purpose, it may achieve satisfactory results

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aims to evaluate the mechanical properties of polymer matrix composites reinforced with sisal fabric bidirectional tissue (Agave sisalana,) and E-glass fibers, containing the following configuration: a polymer matrix hybrid composite (Polyester Resin orthophalic) reinforced with three (3) layers of glass fibers and alternating-2 (two) layers of bidirectional sisal fabric, and finally a composite of polymer matrix reinforced with five (5) layers of glass fiber mat-type E. For this purpose as first step, the preparation of by sisal, since they are not on the market. The composites were made by manual lamination (Hand lay-up) and evaluated for tensile properties and three point bending both in the dry, and wet conditions aswele as immersed in oil. Macroscopic and microscopic characteristics of the materialsweve awalysed, after the completion of the mechanical tests. After the studies, it was proven that the sisal fiber decreases the tensile stiffness of the material above 50% for both situations studied the tensile strength of the material decreases by approximately 40% for the cases mentioned, and when compared to the specific strength stiffness values drop to 14.6% and 29.02% respectively for the dry state only. Constants for bending the values were are to approximately 50% to 25% for strength and stiffness of the material for the cases dry, wet and immersed in oil. Under the influence of tension fluids do not interfere in the stiffness of the material for the bending tests, the same does not occur with the resistance, and these values are modified only in the cases stiffness and flexural strength

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The utilization of synthetic fibers for plastic reinforcement is more and more frequent and this growing interest requires that their mechanic behavior under the most variable conditions of structural applications be known. The use of such materials in the open and exposed to the elements is one of them. In this case, it becomes extremely necessary to study their mechanical properties (strength, stiffness) and the mechanism of fracture by which the environment aging them out. In order to do that, the material must be submitted to hot steam and ultraviolet radiation exposure cycles, according to periods of time determined by the norms. This study proposal deals with the investigation of accelerated environmental aging in two laminated polymeric composites reinforced by hybrid woven made up of synthetic fibers. The configurations of the laminated composites are defined as: one laminate reinforced with hybrid woven of glass fibers/E and Kevlar fibers/49 (LHVK) and the other laminate is reinforced with hybrid tissue of glass fibers/E and of carbon fibers AS4 (LHVC). The woven are plane and bidirectional. Both laminates are impregnated with a thermofix resin called Derakane 470-300 Epoxy Vinyl-Ester and they form a total of four layers. The laminates were industrially manufactured and were made through the process of hand-lay-up. Comparative analyses were carried out between their mechanical properties by submitting specimen to uniaxial loading tractions and three-point flexion. The specimen were tested both from their original state, that is, without being environmentally aging out, and after environmental aging. This last state was reached by using the environmental aging chamber

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Materials known as technical textiles can be defined as structures designed and developed to meet specific functional requirements of various industry sectors, which is the case in automotive and aerospace industries, and other specific applications. Therefore, the purpose of this work presents the development and manufacture of polymer composite with isophthalic polyester resin. The reinforcement of the composite structure is a technical textile fabric made from high performance fibers, aramid (Kevlar 49) and glass fiber E. The fabrics are manufactured by the same method, with the aim of improving the tensile strength of the resulting polymer composite material. The fabrics, we developed some low grammage technical textile structures in laboratory scale and differentiated-composition type aramid (100%), hybrid 1 aramid fiber / glass (65/35%) and hybrid 2 aramid fiber / glass (85/15% ) for use as a reinforcing element in composite materials with unsaturated isophthalic polyester matrix. The polymer composites produced were tested in uniaxial tensile fracture surface and it´s evaluated by SEM. The purpose of this work characterize the performance of polymer composites prepared, identifying changes and based on resistance to strain corresponding to the mechanical behavior. The objectives are to verify the capability of using this reinforcement structure, along with the use of high performance fibers and resin in terms of workability and mechanical strength; verify the adherence of the fiber to the matrix and the fracture surface by electron microscopy scanning and determination of tensile strength by tensile test. The results indicate that, in a comparative study to the response of uniaxial tensile test for tensile strength of the composites and the efficiency of the low percentage of reinforcement element, being a technical textile fabric structure that features characteristic of lightness and low weight added in polymer composites

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The composites manufactured with long fibres aligned in a single direction, and overlay has been shown to have better performance than the short fibers randomly distributed. In particular, the lignocellulosic fibers extracted from the sisal leaves, used in conjunction with the epoxy resin has attracted the attention of many researchers because the final properties of the system formed. In this work composites based on epoxy resin reinforced with sisal fibers were manufactured. The sisal fibres were treated with an alkaline solution of 0.06 mol/l NaOH. The treated, and untreated fibres were subjected to tension x extension tests. The composites were manufactured in the "Lossy" mold with the specifications of the samples to be produced (300x20x4 mm). The tension tests were carried out in accordance with the ASTM standards 3039 (for the composite aligned in a single direction) and ASTM D5573 (for composites in overlay), three point bending tests were performed according to ASTM D790. Analyzing the results of the tests of tension and three point bending tests, it was observed that the composites with the configuration of overlapping had the better elastic module in both tests. As to the maximum resistance to tension, the best result was the composites aligned in a single direction. Tests of absorption of water and micrographs are in progress

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Emerald mining is an important area of the economy in Brazil, country which is in second place among the exporting nations of this gem. Due to the process of extraction, a great amount of reject is generated. Since there is no appropriate destination, the reject is abandoned around the mining industries, contributing to environment degradation. Nowadays, some of the most relevant things to an industry in general are: energy conservation, cost reduction, quality and productivity enhancement. The production of isolating, transformed refractory materials achieves the sustainability dimension when protection of the environment is incorporated to such process. This work investigates the use of emerald mining rejects in the ceramic body of refractory materials, aiming at obtaining a product whose characteristics are compatible with commercial products and, at the same time, allow the use of such rejects to solve the environmental issue caused by its disposal in nature. X-ray fluorescence analysis show that the emerald reject obtained after the flotation to extract molybdenum and mica has 70% of silica and alumina (SiO2+Al2O3) and 21% of a basic oxides and alkaline metals and earthy alkaline mixture (Na2O, K2O, CaO e MgO). Because of the significant amount of silica and alumina present in the reject, four refractory ceramic bodies were prepared. Samples with a rectangular shape and dimensions 100x50x10 mm were pressed in a steel mold at 27,5 MPa and sintered at 1200ºC for 40 min. under environment atmosphere in a resistive oven. The sintered samples were characterized in relation to the chemical composition (FRX), mineralogical composition (DRX), microstructure (MEV) and physical and mechanical properties. The results indicate that the mixture with 45% of reject, 45% of alumina and 10% of kaolin presents a refractory quality of 1420ºC, dimensional linear variation below 2.00%, apparent specific mass of 1,56 g/cm3 and porosity of 46,68%, which demonstrates the potential use of the reject as raw material for the industry of isolating transformed refractory materials

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fillers are often added in composites to enhance performance and/or to reduce cost. Fiberglass pipes must meet performance requirements and industrial sand is frequently added for the pipe to be cost competitive. The sand is added to increase pipe wall thickness, thus increase pipe stiffness. The main goal of the present work is to conduct an experimental investigation between pipes fabricated with and without de addition of sand, to be used in the petroleum industry. Pipes were built using E-glass fibers, polyester resin and siliceous sand. The fabrication process used hand lay up and filament winding and was divided in two different parts: the liner and the structural wall. All tested pipes had the same liner, but different structural wall composition, which is the layer where siliceous sand may be added or not. The comparative investigation was developed considering the results of longitudinal tensile tests, hoop tensile tests, hydrostatic pressure leak tests and parallel-plate loading stiffness tests. SEM was used to analyze if the sand caused any damage to the glass fibers, during the fabrication process, because of the fiber-sand contact. The procedure was also used to verify the composite conditions after the hydrostatic pressure leak test. The results proved that the addition of siliceous sand reduced the leak pressure in about 17 %. In the other hand, this loss in pressure was compensated by a stiffness increment of more than 380 %. MEV analyses show that it is possible to find damage on the fiber-sand contact, but on a very small amount. On most cases, the contact occurs without damage evidences. In summary, the addition of sand filler represented a 27.8 % of cost reduction, when compared to a pipe designed with glass fiber and resin only. This cost reduction combined to the good mechanical tests results make siliceous sand filler suitable for fiberglass pressure pipes