132 resultados para Efeito de perguntas
Resumo:
Neuropeptide S (NPS) is an endogenous 20-aminoacid peptide which binds a G protein-coupled receptor named NPSR. This peptidergic system is involved in the modulation of several biological functions, such as locomotion, anxiety, nociception, food intake and motivational behaviors. Studies have shown the participation of NPSR receptors in mediating the hyperlocomotor effects of NPS. A growing body of evidence suggests the participation of adenosinergic, dopaminergic and CRF systems on the hyperlocomotor effects of NPS. Considering that little is known about the role of dopaminergic system in mediating NPS-induced hyperlocomotion, the present study aims to investigate the locomotor actions of intracerebroventricular (icv) NPS in mice pretreated with α-metil-p-tirosine (AMPT, inhibitor of dopamine synthesis), reserpine (inhibitor of dopamine vesicle storage) or sulpiride (D2 receptor antagonist) in the open field test. A distinct group of animals received the same pretreatments described above (AMPT, reserpine or sulpiride) and the hyperlocomotor effects of methylphenidate (dopamine reuptake inhibitor) were investigated in the open field. NPS and methylphenidate increased the mouse locomotor activity. AMPT per se did not change the locomotion of the animals, but it partially reduced the hyperlocomotion of methylphenidate. The pretreatment with AMPT did not affect the psychostimulant effects of NPS. Both reserpine and sulpiride inhibited the stimulatory actions of NPS and methylphenidate. These findings show that the hyperlocomotor effects of methylphenidate, but not NPS, were affected by the pretreatment with AMPT. Furthermore, methylphenidate- and NPS-induced hyperlocomotion was impaired by reserpine and sulpiride pretreatments. Together, data suggests that NPS can increase locomotion even when the synthesis of catecholamines was impaired. Additionally, the hyperlocomotor effects of NPS and methylphenidate depend on monoamines vesicular storaged, mainly dopamine, and on the activation of D2 receptors. The psychostimulant effects of NPS via activation of dopaminergic system display clinical significance on the treatment of diseases which involves dopaminergic pathways, such as Parkinson s disease and drug addiction
Resumo:
The episodic memory system allows us to retrieve information about events, including its contextual aspects. It has been suggested that episodic memory is composed by two independent components: recollection and familiarity. Recollection is related to the vivid e detailed retrieval of item and contextual information, while familiarity is the capability to recognize items previously seen as familiars. Despite the fact that emotion is one of the most influent process on memory, only a few studies have investigated its effect on recollection and familiarity. Another limitation of studies about the effect of emotion on memory is that the majority of them have not adequately considered the differential effects of arousal and positive/negative valence. The main purpose of the current work is to investigate the independent effect of emotional valence and arousal on recollection and familiarity, as well as to test some hypothesis that have been suggested about the effect of emotion on episodic memory. The participants of the research performed a recognition task for three lists of emotional pictures: high arousal negative, high arousal positive and low arousal positive. At the test session, participants also rated the confidence level of their responses. The confidence ratings were used to plot ROC curves and estimate the contributions of recollection and familiarity of recognition performance. As the main results, we found that negative valence enhanced the component of recollection without any effect on familiarity or recognition accuracy. Arousal did not affect recognition performance or their components, but high arousal was associated with a higher proportion of false memories. This work highlight the importance of to consider both the emotional dimensions and episodic memory components in the study of emotion effect on episodic memory, since they interact in complex and independent way
Resumo:
People-environment interaction, focus of Environmental Psychology studies, presupposes that space influences behavior and vice-versa. Despite of the importance of dynamic reciprocity, there are a few works that treat the mobility condition of the people experimenting space. The present study investigates environmental perception of users of the Engenheiro Roberto Freire Avenue sidewalk, one of the few places in Natal for physical activities practicing, where most people are in intense and continuous movement. A few questions for this study where made: In what way does the individual realize the environment while he is moving? How do reciprocal man-environment relations occur there, according to a mobility context? What are the main difficulties and easiness in man-environment interaction under this condition? The search for these answers is based on concepts of social-spatial human behavior - especially personal space, territoriality, density and crowding and contributions of Barker´s Ecologycal Psychology. Considering that the physical space in this case is multifaceted and the perception of theses scenarios is governed by multiples senses and stimuli, it was defined a multi-methodological route: (i) observation participative in loco; (ii) identification of the main behavior settings at the area; (iii) categorization of the activities occurring at the place; (iv) application of a semi-structured interview; (v) images registered and (vi) construction of the researcher s log. The perception of oneself and others in movement in the environment, immersed in a intricate web of inter-actions, makes people develop mobility strategies, many times unconsciously, with the aim of ensuring satisfaction in its activities. Since the Eng. Roberto Freire Avenue sidewalk is an equipment public-urban largely used by the population of Natal, the reflection of the mobility effectiveness in the users environmental perception is expected, providing suggestions for future studies in this field of knowledge
Resumo:
This study aimed to analyze the effect of a saline solution on growth and chemical composition of Atriplex nummularia, shrubby plant, absorbing salts used in the diet of animals and the management of water and saline soils. These plant seedlings were planted and grown in a reserved area at the Federal University of Rio Grande do Norte. The plantation was divided into two blocks, in which one of them was irrigated with saline solution with a concentration of 2840 mgL-1 of NaCl and the second group was irrigated with drinking water. After six months, the plants were collected, harvested and divided into three parts: leaf, thin and thick stem. Monthly, dimension measurements were carried out for cataloging the growth of Atriplex. Ion Chromatography (IC) and Optical Emission Spectroscopy Inductively Coupled Plasma (ICP-OES) were used to analyze the chemical composition of the partition plant parts. The results of these analyses revealed that an absorption process of anions and cations by Atriplex nummularia plant during its growth was achieved, in particular by a higher concentration of sodium and chloride ions. Scanning electron microscopy images showed and confirmed the presence of small crystals on the leaf surface. Electrical conductivity and pH measurements of the aerial parts of the plant were carried out and these results showed that the leaf is the plant part where there is a largest concentration of ions. In addition, measurements of specific surface were obtained from irrigated plants with saline solution, achieving higher surface area, in all cases. Plant dimensions obtained monthly showed that the plants irrigated with water grew 5% more than those plants irrigated with saline solution. Based on results obtained, Atriplex plant showed a higher potential to survive and adapt to environments (aquatic or geological) with high levels of salinity and this property can be used as a tool for removing salts/metals from industrial contaminated soils and effluents.
Resumo:
The present study describes the stability and rheological behavior of suspensions of poly (N-isopropylacrylamide) (PNIPAM), poly (N-isopropylacrylamide)-chitosan (PNIPAMCS), and poly (N-isopropylacrylamide)-chitosan-poly (acrylic acid) (PNIPAM-CS-PAA) crosslinked particles sensitive to pH and temperature. These dual-sensitive materials were simply obtained by one-pot method, via free-radical precipitation copolymerization with potassium persulfate, using N,N -methylenebisacrylamide (MBA) as a crosslinking agent. Incorporation of the precursor materials into the chemical networks was confirmed by elementary analysis and infrared spectroscopy. The influence of external stimuli such as pH and temperature, or both, on particle behavior was investigated through rheological measurements, visual stability tests and analytical centrifugation. The PNIPAM-CS particles showed higher stability in acid and neutral media, whereas PNIPAM-CS-PAA particles were more stable in neutral and alkaline media, both below and above the LCST of poly (Nisopropylacrylamide) (stability data). This is due to different interparticle interactions, as well as those between the particles and the medium (also evidenced by rheological data), which were also influenced by the pH and temperature of the medium. Based on the results obtained, we found that the introduction of pH-sensitive polymers to crosslinked poly (Nisopropylacrylamide) particles not only produced dual-sensitive materials, but allowed particle stability to be adjusted, making phase separation faster or slower, depending on the desired application. Thus, it is possible to adapt the material to different media
Resumo:
This work is a study of coordination compounds by quantum theory of atoms in molecules (QTAIM), based on the topological analysis of the electron density of molecular systems, both theoretically and experimentally obtained. The coordination chemistry topics which were studied are the chelate effect, bent titanocene and chemical bond in coordination complexes. The chelate effect was investigated according to topological and thermodynamic parameters. The exchange of monodentate ligands on polydentate ligands from same transition metal increases the stability of the complex both from entropy and enthalpy contributions. In some cases, the latter had a higher contribution to the stability of the complex in comparison with entropy. This enthalpic contribution is explained according to topological analysis of the M-ligand bonds where polidentate complex had higher values of electron density of bond critical point, Laplacian of electron density of bond critical point and delocalization index (number of shared electrons between two atoms). In the second chapter, was studied bent titanocenes with bulky cyclopentadienyl derivative π-ligand. The topological study showed the presence of secondary interactions between the atoms of π-ligands or between atoms of π-ligand and -ligand. It was found that, in the case of titanocenes with small difference in point group symmetry and with bulky ligands, there was an nearly linear relationship between stability and delocalization index involving the ring carbon atoms (Cp) and the titanium. However, the titanocene stability is not only related to the interaction between Ti and C atoms of Cp ring, but secondary interactions also play important role on the stability of voluminous titanocenes. The third chapter deals with the chemical bond in coordination compounds by means of QTAIM. The quantum theory of atoms in molecules so far classifies bonds and chemical interactions in two categories: closed shell interaction (ionic bond, hydrogen bond, van der Waals interaction, etc) and shared interaction (covalent bond). Based on topological parameters such as electron density, Laplacian of electron density, delocalization index, among others, was classified the chemical bond in coordination compounds as an intermediate between closed shell and shared interactions
Resumo:
This work aims to study the effects of adding antioxidants, such as, α- tocopherol and BHT on the thermal and oxidative stability of biodiesel from cottonseed (B100). The Biodiesel was obtained through the methylical and ethylical routes. The main physical and chemical properties of cotton seed oil and the B100 were determined and characterized by FTIR and GC. The study of the efficiency of antioxidants, mentioned above, in concentrations of 200, 500, 1000, 1500, 2000ppm, to thermal and oxidative stability, was achieved by Thermogravimetry (TG), Differential Thermal Analysis (DTA), Differential Scanning Calorimetry (DSC), Differential Scanning Calorimetry - Hi-Pressure (P-DSC) and Rancimat. The Biodiesel obtained are within the specifications laid down by Resolution of ANP No7/2008. The results of TG curves show that the addition of both antioxidants, even in the lowest concentration, increases the thermal stability of Biodieseis. Through the DTA and DSC it was possible to study the physical and chemical transitions occurred in the process of volatilization and decomposition of the material under study. The initial time (OT) and temperature (Tp) of oxidation were determined through the P-DSC curve and they showed that the α-tocopherol has a pro-oxidant behavior for some high concentrations. The BHT showed better results than the α-tocopherol, with regard to the resistance to oxidation
Resumo:
The ferrite composition Ni1 - xCoxFe2O4 (0 ≤ x ≤ 0.75) were obtained by the method of microwave assisted synthesis and had their structural and magnetic properties evaluated due to the effect of the substitution of Ni by Co. The compounds were prepared: according to the concept of chemical propellants and heated in the microwave oven with power 7000kw. The synthesized material was characterized by absorption spectroscopy in the infrared (FTIR), Xray diffraction (XRD) using the Rietveld refinement, specific surface area (BET) , scanning electron microscopy (SEM) with aid of energy dispersive analysis (EDS) and magnetic measurements (MAV). The results obtained from these techniques confirmed the feasibility of the method of synthesis employed to obtain the desired spinel structure, the ferrite, nickel ferrite as for nickel doped with cobalt. The results from XRD refinement ally showed the formation of secondary phases concerning stages α - Fe2O3, FeO, (FeCo)O e Ni0. On the other hand, there is an increase in crystallite size with the increase of cobalt in systems, resulting in an increased crystallinity. The results showed that the BET systems showed a reduction in specific surface area with the increase of cobalt and from the SEM, the formation of irregular porous blocks and that the concentration of cobalt decreased the agglomerative state of the system. The magnetic ferrites studied showed different characteristics according to the amount of dopant used, ranging from a very soft magnetic material (easy magnetization and demagnetization ) - for the system without cobalt - a magnetic material with a little stiffer behavior - for systems containing cobalt. The values of the coercive field increased with the increasing growth of cobalt, and the values of saturation magnetization and remanence increased up to x = 0,25 and then reduced. The different magnetic characteristics presented by the systems according to the amount of dopant used, allows the use of these materials as intermediates magnetic
Resumo:
The chart of control of Hotelling T2 has been the main statistical device used in monitoring multivariate processes. Currently the technological development of control systems and automation enabled a high rate of collection of information of the production systems in very short time intervals, causing a dependency between the results of observations. This phenomenon known as auto correlation causes in the statistical control of the multivariate processes a high rate of false alarms, prejudicing in the chart performance. This entails the violation of the assumption of independence and normality of the distribution. In this thesis we considered not only the correlation between two variables, but also the dependence between observations of the same variable, that is, auto correlation. It was studied by simulation, the bi variate case and the effect of auto correlation on the performance of the T2 chart of Hotelling.
Resumo:
The development of computers and algorithms capable of making increasingly accurate and rapid calculations as well as the theoretic foundation provided by quantum mechanics has turned computer simulation into a valuable research tool. The importance of such a tool is due to its success in describing the physical and chemical properties of materials. One way of modifying the electronic properties of a given material is by applying an electric field. These effects are interesting in nanocones because their stability and geometric structure make them promising candidates for electron emission devices. In our study we calculated the first principles based on the density functional theory as implemented in the SIESTA code. We investigated aluminum nitride (AlN), boron nitride (BN) and carbon (C), subjected to external parallel electric field, perpendicular to their main axis. We discuss stability in terms of formation energy, using the chemical potential approach. We also analyze the electronic properties of these nanocones and show that in some cases the perpendicular electric field provokes a greater gap reduction when compared to the parallel field
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
We considered prediction techniques based on models of accelerated failure time with random e ects for correlated survival data. Besides the bayesian approach through empirical Bayes estimator, we also discussed about the use of a classical predictor, the Empirical Best Linear Unbiased Predictor (EBLUP). In order to illustrate the use of these predictors, we considered applications on a real data set coming from the oil industry. More speci - cally, the data set involves the mean time between failure of petroleum-well equipments of the Bacia Potiguar. The goal of this study is to predict the risk/probability of failure in order to help a preventive maintenance program. The results show that both methods are suitable to predict future failures, providing good decisions in relation to employment and economy of resources for preventive maintenance.