324 resultados para Cimentação de poços
Resumo:
The success achieved by thermal methods of recovery, in heavy oils, prompted the emergence of studies on the use of electromagnetic waves as heat generating sources in oil reservoirs. Thus, this generation is achieved by three types of different processes according to the frequency range used. They are: the electromagnetic induction heating, the resistive and the dielectric, also known as radiation. This study was based on computer simulations in oil reservoirs with characteristics similar to those found in the sedimentary basins of the Brazilian Northeast. All cases studied were simulated using the software STARS, CMG (Computer Group, version 2012.10 Modeling). Some simulations took into account the inclusion of electrically sensitive particles in certain sectors of the reservoir model studied by fracturing. The purpose of this work is the use of the electromagnetic induction heating as a recovery method of heavy oil, to check the influence of these aforementioned particles on the reservoir model used. Comparative analyses were made involving electromagnetic induction heating, the operation of hydraulic fracturing and the injection of water to the different situations of the reservoir model studied. It was found that fracturing the injection well in order that the electromagnetic heating occurs in the same well where there is water injection, there was a considerable increase in the recovery factor and in the cumulative oil production in relation to the models in which hydraulic fracturing occurred in the production well and water injection in the injection well. This is due to the generation of steam in situ in the reservoir.
Resumo:
The distribution of diagenetic alterations in Late Cenomanian siliciclastic reservoirs from Potiguar Basin was influenced by the stratigraphic framework and the depositional system. Seismic sections and geophysical logs of two wells drilled in the SW portion of the mentioned basin above register regional stratigraphic surfaces representing maximum floods related to a transgressive event. The sequential analysis of 80 m of drill core (~450 m deep) recognized nine depositional facies with an upwards granodecrescent standard piling that limits cycles with an erosional conglomeratic base (lag) overlain by intercalations of medium to very fine sandstones showing cross bedding (channel, planar and low angled) and horizontal bedding (plane-parallel , wave and flaser). The top of the cycles is marked by the deposition of pelites and the development of paleosoils and lagoons. The correlation of genetically related facies reveals associations of channel fillings, crevasse, and flood plains deposited in a transgressive system. Detailed descriptions of seventy nine thin sections aided by MEV-EBSD/EDS, DRX and stable isotope analyses in sandstones revealed an arcosian composition and complex textural arrays with abundant smectite fringes continuously covering primary components, mechanically infiltrated cuticles and moldic and intragrain pores. K-feldspar epitaxial overgrowth covers microcline and orthoclase grains before any other phase. Abundant pseudomatrix due to the compactation of mud intraclasts concentrate along the stratification planes, locally replaced by macrocristalline calcite and microcrystalline and framboidal pyrite. Kaolinite (booklets and vermicular), microcrystalline smectite, microcrystalline titanium minerals and pyrite replace the primary components. The intergrain porosity prevails over the moldic, intragrain and contraction porosities. The pores are poorly connected due to the presence of intergranular smectite, k-feldspar overgrowth, infiltrated mud and pseudomatrix. The sandstones were subjected to eodiagenetic conditions next to the surface and shallow burial mesodiagenetic conditions. The diagenetic alterations reduced the porosity and the permeability mainly due to the precipitation of smectite fringes, compactation of mud intraclasts onto the pseudomatrix and cementing by poikilotopic calcite characterizing different reservoir petrofacies. These diagenetic products acted as barriers and detours to the flow of fluids thus reducing the quality of the reservoir.
Resumo:
During its operations, the oil industry generates a lot of waste, including gravel from drilling. Control of environmental impacts caused by this waste represents a major challenge. Such impacts can be minimized when it is given an appropriate management by being properly treated and properly disposed or recycled. The properties of these materials can be greatly influenced when a waste is added to its composition. This work aims to study the incorporation of gravel waste oil-well drilling in the standard body for production of red ceramic from a ceramic industry in São Gonçalo do Amarante / RN. The success of the incorporation can minimize costs in the production of ceramic pieces and reduce the environmental impacts caused by waste. The raw materials used were collected, characterized, and formulated with the percentages of 0%, 20% and 40% by weight of substitution of residue were synthesized at temperatures of 900, 1.010 and 1.120 °C using 30 minute firing intervals, 1 hour and 30min and 2 hours and 30 minutes, based on a factorial design 2³. Samples were then subjected to the tests of Water Absorption, Linear Retraction Firing, Flexural Rupture Strength, Apparent Porosity and Apparent Specific mass and Scanning Electron Microscopy (SEM) of break section. The results showed that the use of the residue for the manufacture of the ceramic products is possible (tiles, bricks and massive hollow bricks) replacing the clay to 40%, meeting the requirements of the standard and the literature for the technological properties of the final product.
Resumo:
A constante busca da indústria de petróleo pelo aumento de produção à um baixo custo operacional faz necessário o desenvolvimento de tecnologias que una as duas necessidades. A Acidificação de matriz é um método de estimulação frequentemente empregado para aumentar produção de um poço de petróleo com um custo menor se comparado a um fraturamento. O objetivo deste trabalho é estudar a obtenção de nanoemulsões ácidas para aplicação em acidificação de matriz. As nanoemulsões são capazes de retardar reações, por diminuir a difusão do ácido no meio, possibilitando a acidificação em reservatórios com baixa permeabilidade. Os reagentes utilizados para formar os sistemas nanoemulsionados foram UNT L90/OMS e RNX 110 como tensoativos, Sec-butanol como cotensoativo, Xileno e Querosene como fase óleo e Solução de HCl como fase aquosa. As nanoemulsões foram obtidas a partir da diluição de microemulsões com água ou solução de HCl. Foi realizado estudo das tensões superficiais, estudo das cinéticas de reação, avaliação da injeção em rocha carbonática e remoção de borra asfáltica. As nanoemulsões apresentaram tensão superficial menor que suas microemulsões de origem. As nanoemulsões tiveram êxito em retardar a reação entre CaCO3 e HCl, onde o sistema mais eficiente é composto por UNT L90/OMS, Secbutanol, Querosene e solução de HCl. As nanoemulsões foram eficientes em formar wormholes em plugs de carbonato calcitico com baixa permeabilidade natural. As wormholes proporcionaram incremento de permeabilidade alcançando valores de até 390 mD. O sistema ácido apresentou bom resultado de remoção de borra asfáltica, mostrando o potencial das nanoemulsões em remover esse tipo de dano. Conclui-se que os sistemas nanoemulsionados têm grande potencial de aplicação em acidificação de matriz.
Resumo:
Water injection in oil reservoirs is a recovery technique widely used for oil recovery. However, the injected water contains suspended particles that can be trapped, causing formation damage and injectivity decline. In such cases, it is necessary to stimulate the damaged formation looking forward to restore the injectivity of the injection wells. Injectivity decline causes a major negative impact to the economy of oil production, which is why, it is important to foresee the injectivity behavior for a good waterflooding management project. Mathematical models for injectivity losses allow studying the effect of the injected water quality, also the well and formation characteristics. Therefore, a mathematical model of injectivity losses for perforated injection wells was developed. The scientific novelty of this work relates to the modeling and prediction of injectivity decline in perforated injection wells, considering deep filtration and the formation of external cake in spheroidal perforations. The classic modeling for deep filtration was rewritten using spheroidal coordinates. The solution to the concentration of suspended particles was obtained analytically and the concentration of the retained particles, which cause formation damage, was solved numerically. The acquisition of the solution to impedance assumed a constant injection rate and the modified Darcy´s Law, defined as being the inverse of the normalized injectivity by the inverse of the initial injectivity. Finally, classic linear flow injectivity tests were performed within Berea sandstone samples, and within perforated samples. The parameters of the model, filtration and formation damage coefficients, obtained from the data, were used to verify the proposed modeling. The simulations showed a good fit to the experimental data, it was observed that the ratio between the particle size and pore has a large influence on the behavior of injectivity decline.
Resumo:
With an increasing number of mature fields, heavy oil recovery has performed one of the great challenges of the oil industry. The Brazilian Northeast, for example, has numerous heavy oil reservoirs are explored with the use of thermal methods. Among the types of methods used for heavy oil, there is the method of in-situ combustion, a technique in which heat is produced within the container, unlike the injection of heated fluid when the heat is generated at the surface and transported to the reservoir. In this type of process, it is common to use vertical wells as injectors and producers. However, methods which use horizontal wells like oil producers are increasingly studied because of greater contact area between the formation and combustion front. Thus, the main objective of this work was to study the different configurations of wells (CIS THAITM and CAGD) in the process of in-situ combustion in oil recovery using a semi-synthetic tank with Brazilian Northeast features. The method "toe-to-heel air injection" (THAITM) is a process of enhanced oil recovery, which is the integration of in-situ combustion with technological advances in drilling horizontal wells. This method uses horizontal wells such as oil producers, keeping vertical injection wells for injecting air. The oil drain process by differential gravitational assisted with combustion (CAGD) is an integrated, in this configuration the horizontal injector well is drilled at the top formation with a horizontal production well in the lower section. The simulations were performed in a commercial program of thermal processes, called "STARS" (Steam, Thermal, and Advanced Processes Reservoir Simulator), the company CMG (Computer Modelling Group). An analysis of the air flow injection was performed and it was found that each method had a maximum injection to the base model, a show that through this air injection limit was reduced cumulative production of oil. Analyses of operating parameters were used: injection flow, configuration and completion of wells. In the sensitivity analysis we found that the air injection flow showed greater influence on THAI method, since the CIS method the completion of the wells was the most influential parameter and CAGD configuration wells showed the greatest influence in the recovered fraction. The economic results have shown that the best case obtained in CAGD method because, despite having higher initial cost showed the best financial return compared to the best cases the CIS and THAI.
Resumo:
With an increasing number of mature fields, heavy oil recovery has performed one of the great challenges of the oil industry. The Brazilian Northeast, for example, has numerous heavy oil reservoirs are explored with the use of thermal methods. Among the types of methods used for heavy oil, there is the method of in-situ combustion, a technique in which heat is produced within the container, unlike the injection of heated fluid when the heat is generated at the surface and transported to the reservoir. In this type of process, it is common to use vertical wells as injectors and producers. However, methods which use horizontal wells like oil producers are increasingly studied because of greater contact area between the formation and combustion front. Thus, the main objective of this work was to study the different configurations of wells (CIS THAITM and CAGD) in the process of in-situ combustion in oil recovery using a semi-synthetic tank with Brazilian Northeast features. The method "toe-to-heel air injection" (THAITM) is a process of enhanced oil recovery, which is the integration of in-situ combustion with technological advances in drilling horizontal wells. This method uses horizontal wells such as oil producers, keeping vertical injection wells for injecting air. The oil drain process by differential gravitational assisted with combustion (CAGD) is an integrated, in this configuration the horizontal injector well is drilled at the top formation with a horizontal production well in the lower section. The simulations were performed in a commercial program of thermal processes, called "STARS" (Steam, Thermal, and Advanced Processes Reservoir Simulator), the company CMG (Computer Modelling Group). An analysis of the air flow injection was performed and it was found that each method had a maximum injection to the base model, a show that through this air injection limit was reduced cumulative production of oil. Analyses of operating parameters were used: injection flow, configuration and completion of wells. In the sensitivity analysis we found that the air injection flow showed greater influence on THAI method, since the CIS method the completion of the wells was the most influential parameter and CAGD configuration wells showed the greatest influence in the recovered fraction. The economic results have shown that the best case obtained in CAGD method because, despite having higher initial cost showed the best financial return compared to the best cases the CIS and THAI.
Resumo:
The advance of drilling in deeper wells has required more thermostable materials. The use of synthetic fluids, which usually have a good chemical stability, faces the environmental constraints, besides it usually generate more discharge and require a costly disposal treatment of drilled cuttings, which are often not efficient and require mechanical components that hinder the operation. The adoption of aqueous fluids generally involves the use of chrome lignosulfonate, used as dispersant, which provides stability on rheological properties and fluid loss under high temperatures and pressures (HTHP). However, due to the environmental impact associated with the use of chrome compounds, the drilling industry needs alternatives that maintain the integrity of the property and ensure success of the operation in view of the strong influence of temperature on the viscosity of aqueous fluids and polymers used in these type fluids, often polysaccharides, passives of hydrolysis and biological degradation. Therefore, vinyl polymers were selected for this study because they have predominantly carbon chain and, in particular, polyvinylpyrrolidone (PVP) for resisting higher temperatures and partially hydrolyzed polyacrylamide (PHPA) and clay by increasing the system's viscosity. Moreover, the absence of acetal bonds reduces the sensitivity to attacks by bacteria. In order to develop an aqueous drilling fluid system for HTHP applications using PVP, HPAM and clay, as main constituents, fluid formulations were prepared and determined its rheological properties using rotary viscometer of the Fann, and volume filtrate obtained by filtration HTHP following the standard API 13B-2. The new fluid system using polyvinylpyrrolidone (PVP) with high molar weight had higher viscosities, gels and yield strength, due to the effect of flocculating clay. On the other hand, the low molecular weight PVP contributed to the formation of disperse systems with lower values in the rheological properties and fluid loss. Both systems are characterized by thermal stability gain up to around 120 ° C, keeping stable rheological parameters. The results were further corroborated through linear clay swelling tests.
Resumo:
The advance of drilling in deeper wells has required more thermostable materials. The use of synthetic fluids, which usually have a good chemical stability, faces the environmental constraints, besides it usually generate more discharge and require a costly disposal treatment of drilled cuttings, which are often not efficient and require mechanical components that hinder the operation. The adoption of aqueous fluids generally involves the use of chrome lignosulfonate, used as dispersant, which provides stability on rheological properties and fluid loss under high temperatures and pressures (HTHP). However, due to the environmental impact associated with the use of chrome compounds, the drilling industry needs alternatives that maintain the integrity of the property and ensure success of the operation in view of the strong influence of temperature on the viscosity of aqueous fluids and polymers used in these type fluids, often polysaccharides, passives of hydrolysis and biological degradation. Therefore, vinyl polymers were selected for this study because they have predominantly carbon chain and, in particular, polyvinylpyrrolidone (PVP) for resisting higher temperatures and partially hydrolyzed polyacrylamide (PHPA) and clay by increasing the system's viscosity. Moreover, the absence of acetal bonds reduces the sensitivity to attacks by bacteria. In order to develop an aqueous drilling fluid system for HTHP applications using PVP, HPAM and clay, as main constituents, fluid formulations were prepared and determined its rheological properties using rotary viscometer of the Fann, and volume filtrate obtained by filtration HTHP following the standard API 13B-2. The new fluid system using polyvinylpyrrolidone (PVP) with high molar weight had higher viscosities, gels and yield strength, due to the effect of flocculating clay. On the other hand, the low molecular weight PVP contributed to the formation of disperse systems with lower values in the rheological properties and fluid loss. Both systems are characterized by thermal stability gain up to around 120 ° C, keeping stable rheological parameters. The results were further corroborated through linear clay swelling tests.
Resumo:
LINS, Filipe C. A. et al. Modelagem dinâmica e simulação computacional de poços de petróleo verticais e direcionais com elevação por bombeio mecânico. In: CONGRESSO BRASILEIRO DE PESQUISA E DESENVOLVIMENTO EM PETRÓLEO E GÁS, 5. 2009, Fortaleza, CE. Anais... Fortaleza: CBPDPetro, 2009.
Resumo:
The present work is to study the characteristics and technological properties of soil-cement bricks made from binary and ternary mixtures of Portland cement, sand, water, with or without addition of gravel from the drilling of oil wells, which could be used by industry, aiming to improve its performance and reduce cost by using the residue and, consequently, increasing its useful life. The soil-cement bricks are one of the alternatives to masonry construction. These elements, after a short curing period, provide compressive strength similar to that of solid bricks and ceramic blocks, and the higher the resistance the higher the amount of cement used. We used the soil from the city of São José do Mipibu / RN, the banks of the River Baldun, cement CPIIZ-32 and residue of drill cuttings from oil wells drilling onshore wells in the town of Mossley, RN, provided Petrobras. To determine the optimum mix, we studied the inclusion of different residues (100%, 80%, 70%, 60% and 50%) where 15 bodies were made of the test piece. The assessment was made of bricks made from simple compression tests, mass loss by immersion and water absorption. The experimental results proved the efficiency and high utilization of the waste from the drilling of oil wells, making the brick-cement-soil residue with a higher strength and lower water absorption. The best result in terms of mechanical strength and water absorption for the ternary mixture was 10% soil, 14% cement and 80% residue. In terms of binary mixtures, we obtained the best result for the mix-cement residue, which was 14% cement incorporated in the residue
Resumo:
One of the major challenges faced nowadays by oil companies is the exploration of pre-salt basins. Thick salt layers were formed in remote ages as a consequence of the evaporation of sea water containing high concentrations of NaCl and KCl. Deep reservoirs can be found below salt formations that prevent the outflow of oil, thus improving the success in oil prospection. The slurries used in the cement operations of salt layers must be adequate to the properties of those specific formations. At the same time, their resulting properties are highly affected by the contamination of salt in the fresh state. It is t herefore important to address the effects of the presence of salt in the cement slurries in order to assure that the well sheath is able to fulfill its main role to provide zonal isolation and mechanical stability. In this scenario, the objective of the present thesis work was to evaluate the effect of the presence of NaCl and KCl premixed with cement and 40% silica flour on the behavior of cement slurries. Their effect in the presence of CO2 was also investigated. The rheological behavior of slurries containing NaCl and KCl was evaluated along with their mechanical strength. Thermal and microstructural tests were also carried out. The results revealed that the presence of NaCl and KCl affected the pozzolanic activity of silica flour, reducing the strength of the hardened slurries containing salt. Friedel´s salt was formed as a result of the bonding between free Cl- and tricalcium aluminate. The presence of CO2 also contributed to the degradation of the slurries as a result of a process of carbonation/bicarbonataion
Resumo:
Metal-ceramic interfaces are present in tricone drill bits with hard ceramic inserts for oil well drilling operations. The combination of actions of cutting, crushing and breaking up of rocks results in the degradation of tricone drill bits by wear, total or partial rupture of the drill bit body or the ceramic inserts, thermal shock and corrosion. Also the improper pressfitting of the ceramic inserts on the bit body may cause its total detachment, and promote serious damages to the drill bit. The improvement on the production process of metal-ceramic interfaces can eliminate or minimize some of above-mentioned failures presented in tricone drill bits, optimizing their lifetime and so reducing drilling metric cost. Brazing is a widely established technique to join metal-ceramic materials, and may be an excellent alternative to the common mechanical press fitting process of hard ceramic inserts on the steel bit body for tricone drill bit. Wetting phenomena plays an essential role in the production of metal/ceramic interfaces when a liquid phase is present in the process. In this work, 72Silver-28Copper eutectic based brazing alloys were melted onto zirconia, silicon nitride and tungsten carbide/Co substrates under high vacuum. Contact angle evolution was measured and graphically plotted, and the interfaces produced were analysed by SEM-EDX. The AgCu eutectic alloy did not wet any ceramic substrates, showing high contact angles, and so without chemical interaction between the materials. Better results were found for the systemns containing 3%wt of titanium in the AgCu alloy. The presence os titanium as a solute in the alloy produces wettable cand termodinamically stable compounds, increasing the ceramics wetting beahviour
Resumo:
The new oil reservoirs discoveries in onshore and ultra deep water offshore fields and complex trajectories require the optimization of procedures to reduce the stops operation during the well drilling, especially because the platforms and equipment high cost, and risks which are inherent to the operation. Among the most important aspects stands out the drilling fluids project and their behavior against different situations that may occur during the process. By means of sedimentation experiments, a correlation has been validated to determe the sedimentation particles velocity in variable viscosity fluids over time, applying the correction due to effective viscosity that is a shear rate and time function. The viscosity evolution over time was obtained by carrying out rheologic tests using a fixed shear rate, small enough to not interfere in the fluid gelling process. With the sedimentation particles velocity and the fluid viscosity over time equations an iterative procedure was proposed to determine the particles displacement over time. These equations were implemented in a case study to simulate the cuttings sedimentation generated in the oil well drilling during stops operation, especially in the connections and tripping, allowing the drilling fluid project in order to maintain the cuttings in suspension, avoiding risks, such as stuck pipe and in more drastic conditions, the loss of the well
Resumo:
Until the early 90s, the simulation of fluid flow in oil reservoir basically used the numerical technique of finite differences. Since then, there was a big development in simulation technology based on streamlines, so that nowadays it is being used in several cases and it can represent the physical mechanisms that influence the fluid flow, such as compressibility, capillarity and gravitational segregation. Streamline-based flow simulation is a tool that can help enough in waterflood project management, because it provides important information not available through traditional simulation of finite differences and shows, in a direct way, the influence between injector well and producer well. This work presents the application of a methodology published in literature for optimizing water injection projects in modeling of a Brazilian Potiguar Basin reservoir that has a large number of wells. This methodology considers changes of injection well rates over time, based on information available through streamline simulation. This methodology reduces injection rates in wells of lower efficiency and increases injection rates in more efficient wells. In the proposed model, the methodology was effective. The optimized alternatives presented higher oil recovery associated with a lower water injection volume. This shows better efficiency and, consequently, reduction in costs. Considering the wide use of the water injection in oil fields, the positive outcome of the modeling is important, because it shows a case study of increasing of oil recovery achieved simply through better distribution of water injection rates