206 resultados para Absorção digestiva
Resumo:
The search for sustainable technologies that can contribute to reduce energy consumption is a great challenge in the field of insulation materials. In this context, composites manufactured from vegetal sources are an alternative technology. The principal objectives of this work are the development and characterization of a composite composed by the rigid polyurethane foam derived from castor oil (commercially available as RESPAN D40) and sisal fibers. The manufacture of the composite was done with expansion controlled inside a closed mold. The sisal fibers where used in the form of needlepunched nonwoven with a mean density of 1150 g/m2 and 1350 g/m2. The composite characterization was performed through the following tests: thermal conductivity, thermal behavior, thermo gravimetric analysis (TG/DTG), mechanical strength in compression and flexural, apparent density, water absorption in percentile, and the samples morphology was analyzed in a MEV. The density and humidity percentage of the sisal fiber were also determined. The thermal conductivity of the composites was higher than the pure polyurethane foam, the addition of nonwoven sisal fibers will become in a higher level of compact foam, reducing empty spaces (cells) of polyurethane, inducing an increase in k value. The apparent density of the composites was higher than pure polyurethane foam. In the results of water absorption tests, was seen a higher absorption percent of the composites, what is related to the presence of sisal fibers which are hygroscopic. From TG/DTG results, with the addition of sisal fibers reduced the strength to thermal degradation of the composites, a higher loss of mass was observed in the temperature band between 200 and 340 °C, related to urethane bonds decomposition and cellulose degradation and its derivatives. About mechanical behavior in compression and flexural, composites presented a better mechanical behavior than the rigid polyurethane foam. An increase in the amount of sisal fibers induces a higher rigidity of the composites. At the thermal behavior tests, the composites were more mechanically and thermally resistant than some materials commonly used for thermal insulation, they present the same or better results. The density of nonwoven sisal fiber had influence over the insulation grade; this means that, an increaser in sisal fiber density helped to retain the heat
Resumo:
The State of Rio Grande do Norte, Brazil, possess major deposits of feldspar, clay, kaolin and talc, all raw materials used in the production of porcelainized stoneware tiles. Conversely, state industries manufacture only low added value red ceramics. Porcelainized stoneware tiles is one of the noblest ceramics, depicting low water absorption (typically below of 0,5%), in addition to excellent staining resistance and mechanical strength. The present work aims at investigating the potential of local raw materials for the production of porcelainized stoneware tiles. To that end, these materials were characterized by X-ray fluorescence, X-ray diffraction, particle size analysis, thermal gravimetric analysis and thermal differential analysis. Admixtures containing different compositions were prepared and fired at three temperatures, 1150, 1200 and 1250°C for 30 min. After firing, tests samples were characterized by water absorption tests, linear retraction, dilatometric analysis, apparent porosity, apparent specific mass, flexural strength, and microstructural analysis by XRD and SEM. The results revealed that ceramics with porcelainized stoneware tiles characteristics could be produced from raw materials originated in the State of Rio Grande do Norte
Resumo:
The types of products manufactured calcium silicate blocks are very diversified in its characteristics. They include accessory bricks, blocks, products in dense material, with or without reinforcements of hardware, great units in cellular material, and thermal insulating products. The elements calcium silicate are of great use in the prefabricated construction, being formed for dense masses and hardened by autoclaving. This work has for objective develop formulations that make possible the obtaining of calcium silicate blocks with characteristics that correspond the specifications technical, in the State of the Rio Grande of the North, in finality of obtaining technical viability for use in the civil construction. The work studied the availability raw materials from convenient for the production of calcium silicate blocks, and the effect of variations of the productive process on the developed products. The studied raw materials were: the quartz sand from the city of São Gonçalo do Amarante/RN, and two lime, a hydrated lime and a pure lime from the city of Governador Dix-Sept Rosado/RN. The raw materials collected were submitted a testes to particle size distribution, fluorescence of X rays, diffraction of X rays. Then were produced 8 formulations and made body-of-test by uniaxial pressing at 36 MPa, and cured for 7 hours at about 18 kgf/cm2 pressing and temperature of approximately 180 °C. The cure technological properties evaluated were: lineal shrinkage, apparent density, apparent porosity, water absorption, modulus of rupture flexural (3 points), resistance compression, phase analysis (XRD) and micromorphological analysis (SEM). From the results presented the technological properties, was possible say that utilization of hydrated lime becomes more viable its utilization in mass limestone silica, for manufacture of calcium silicate blocks
Resumo:
In this work, it is proposed the study of the effect of barium oxide acting as synthetic flow in the behavior of masses for stoneware from the use of raw materials found in the deposits of minerals of the Rio Grande do Norte that it makes use of a great natural potential for the industrialization of the product. The porcelanato is a sophisticated product with excellent final properties being applied as ceramic coating in buildings of high standard of engineering. The raw materials selected for the development of the study had been two types of argilas, two types of feldspatos, dolomita, talco, barium carbonate and silica, being characterized by X-ray fluorescence, X-ray diffraction, granulometric analysis, dilatometric analysis and thermal analysis. Thus, it is intended to define four formulations using the cited raw materials that will be processed, conformed and sintered in the temperatures of 1150 °C, 1175 °C, 1200 °C, 1225 °C e 1250 °C. From the physical characterizations, chemical and morphologic of the formed formulations, the effect of barium oxide is determined in the physical and mechanical properties of the studied system carrying water absorption tests, linear retraction, apparent porosity, apparent specific mass, compacting curve, flexural strength and microstructural analysis by XRD and SEM. After analyzing the results, indicated that barium oxide acts as a flux of high temperature and as the ordering of structure, where the embedded glass phase has the nucleating effect phase potassium silico-aluminum reacting with free silica which together with the high content of potassium concentrated form a new crystalline phase called microcline. The masses studied with the addition of barium oxide present physical-mechanical properties highly satisfactory in reduced firing temperatures, which implies a saving in energy given off in the production and increased productivity
Resumo:
In the execution of civil engineering works, either by wasting during the coating of wall or demolition of gypsum walls, the generation of the gypsum waste involves serious environmental concerns. These concerns are increased by the high demand of this raw material in the sector and by the difficulties of proper disposal byproduct generated. In the search for alternatives to minimize this problem, many research works are being conducted, giving emphasis in using gypsum waste as fillers in composites materials in order to improve the acoustic, thermal and mechanical performances. Through empirical testing, it was observed that the crystallization water contained in the residue (CaSO4.2H2O) could act like primary agent in the expanding of the polyurethane foam. Considering that polyurethane produced from vegetable oils are biodegradable synthetic polymers and that are admittedly to represent an alternative to petrochemical synthetic polyurethane, this research consist an analysis of the thermal behavior of a composite whose matrix obtained from a resin derived from the expansive castor oil seed, with loads of 4%, 8%, 12% and 16% of gypsum waste replacing to the polyol prepolymer blend. Contributors to this analysis: a characterization of the raw material through analysis of spectroscopy by Fourier transform infrared (FTIR), chemical analysis by X-Ray Fluorescence (XRF) and mineralogical analysis by X Ray Diffraction (XRD), complemented by thermo gravimetric analysis (TGA). In order to evaluate the thermo physical properties and thermal behavior of the composites manufactured in die closed with expansion contained, were also carried tests to determine the percentage of open pore volume using a gas pycnometer, scanning electronic microscopy (SEM), in addition to testing of flammability and the resistance to contact with hot surfaces. Through the analysis of the results, it appears that it is possible to produce a new material, which few changes in their thermo physical properties and thermal performance, promotes significant changes and attractive to the environment
Resumo:
The State Bahia, Brazil, presents different geological sites it with a very expressive variety minerals. It is situated among the very important States which produces minerals for industries, such as pointed aggregate, ornamentals stones and ceramics raw materials. Nowadays only four companies producting ceramics tiles. Porcelainized stoneware tiles is one of the noblest ceramics, depicting low water absorption (typically below of 0,5%), in addition to excellent staining resistance and mechanical strength. The present work aims at investigating the potential of local raw materials for the production of porcelainized stoneware tiles. For this purpose, these materials were characterized by X-ray fluorescence, X-ray diffraction, particle size analysis, thermal gravimetric analysis, thermal differential analysis and dilatometric analysis. Admixtures containing different compositions were prepared and fired at four temperatures, 1100 ºC, 1150 ºC, 1200 ºC and 1250 ºC with isotherm for 60 minute and heathing rate of 5 oC/min. After firing the samples, they were characterized by water absorption tests, linear retraction, analysis, apparent porosity, apparent specific mass, flexural strength, and microstructural analysis by X-ray diffraction and scanning electron microscopy . The results revealed three ceramics with porcelainized stoneware tiles characteristics and porcelain tile will be produce from raw materials originated in the State of Bahia
Resumo:
The limits to inform is about the character stico of basic, quimica, mineralogical and mechaniques of matlaughed material used in the manufacturing process the product certified in economic region the Cariri, specifically in the city of Crato, Ceará state, motivated the development of this work, since in this region the exist ing economic context that a general appear as important in the production chains. Were made twentyfive soils-test specimen collection and the study was performed to differentiate the mat laugh materials of variaveis processing of mathing raw materials in the factory The product mica monkeys by extrusion and pressing. The results were obtained ap s as analyzes: grain size, index of plasticity, fluoresce incidence X-ray difration the X-ray, and analyzes thermicals and properties technological. through s of curves gresifica returned to was a comparison between the retro the linear, absorb to water, porosity and bulk density. the results show that the excellent distribution and character acceptable available for the processing of the structure color dark red. needing, therefore, of the mixture of a less plastic clay with thick granulation, that works as plasticity reducer. In spite of the different resignation forms for prensagem and extrusion, the characteristics of absorption of water and rupture tension the flexing was shown inside of the patterns of ABNT
Resumo:
It presents a solar collector to be used in a system for heating water for bathing, whose main characteristics are its low cost and easy manufacturing and assembly. The absorbing surface of the collector is formed by an aluminum plate with eight flaps where they lodge PVC pipes. The catchment area of solar radiation corresponds to 1.3 meters. The collector box was made of wood, is covered by transparent glass and thermal insulation of tire chips and expanded polystyrene (EPS). Absorber tubes were connected in parallel through the use of PVC fittings and fixed to the plate by the use of metal poles and rivets. The entire absorber received paint flat black for better absorption of sunlight. The system worked on a thermosiphon assembly and absorber of the collector has been tested in two configurations: with the tubes facing up, directly exposed to the impact of sunlight and facing down, exchanging heat with the plate by conduction. It was determined the most efficient configuration for the correct purpose. The solar collector was connected to a thermal reservoir, also alternative, low-cost forming the system of solar water heating. We evaluated thermal parameters that proved the viability of the heating system studied
Resumo:
This study aimed to investigate the use of cane sugar ashes from small-scale stills of Eunápolis region, state of Bahia, in pottery mass that can be developed as porcelain stoneware. Bahia is the second largest producer of rum distillery in Brazil. In the production of rum is produced residue called bagasse, which is used to generate electricity in Power plants and in the distillery itself, generating ashes as residue, which is played in nature, causing environmental damage. We studied 5 (five) formulations of 0% 10% 20%, 30% and 40% by weight of the ash, without ignition and 3 (three) formulations of 10%, 20% and 30% with gray ash temperature of 1250ºC. The formulation at 0% by weight of ash was used for a comparison between the traditional mass of porcelain stoneware and the masses with the addition of ash calcined, replacing feldspar. The percentage by weight of kaolin and of Clay was kept the same, 30%, and all raw materials were derived from the state of Bahia. The samples were made in uniaxial array with dimensions of (60 x 20 x 5) mm and compressed to a pressure of 45 MPa. Assays were performed to characterize the raw by X-ray fluorescence, X-ray diffraction, ATD and ATG and Dilatometric analysis. The samples were sintered at temperatures of 1100°C, 1150°C, 1200°C and 1250°C, for the specimens with the ashes without ash and 1150° C and 1200° C for specimens with the gray level of calcined 60 minutes. and then we made a cooling ramp with the same rate of warming until reach ambient temperature. The sintered bodies were characterized by water absorption, porosity, linear shrinkage, bending strength and XRD of the fracture surface and the results analyzed. It was proven, after results of tests performed, that it is possible to use the ash residue of sugar cane bagasse on ceramic coating with the addition of up to 10% wt of the residue ash
Resumo:
Companies involved in emerald mining and treatment represent an important area of industrial development in Brazil, with significative contribution to the worldwide production of such mineral. As a result, large volumes of emerald waste are constantly generated and abandoned in the environment, negatively contributing to its preservation. By the other side the interest of the use of mining waste as additive in ceramic products has been growing from researchers in recent years. The ceramic industry is constantly seeking to the marked amplification for the sector and perfecting the quality of the products and to increase the variety of applications. The technology of obtaining of ceramic tiles that uses mining residues assists market niches little explored. In this scenario, the objective of the present study was to characterize the residue generated from emerald mining as well as to assess its potential use as raw material for the production of ceramic tiles. Ceramic mixtures were prepared from raw materials characterized by X-ray fluorescence, X-ray diffraction, particle size analysis and thermal analysis. Five compositions were prepared using emerald residue contents of 0%, 10%, 20%, 30% and 40%. Samples were uniaxially pressed, fired at 1000, 1100 and 1200ºC and characterized aiming at establishing their mineralogical composition, water absorption, apparent porosity, specific mass, linear retraction and modulus of rupture. The results shows that the emerald residue, basically consisted of 73% of (SiO2 + Al2O3) and 17,77% of (MgO + Na2O+ K2O) (that facilitates sintering), can be added to the ceramic tile materials with no detrimental effect on the properties of the sintered products
Resumo:
Brazil is the world s leading coffee producer. In 2008, 45.99 million of 60 kg bags of benefited coffee were produced. In the process of improvement 50% is grain and 50% is husk, thus, 1.38 million tons of coffee husk are produced annually. The husk is used as combustible in the drying and improvement ovens in the coffee farms, generating ash as residue. These ashes contain a high concentration of alkaline metals and earth metals, mainly K2O and CaO. This work studies the use of this residue in the ceramic tiles industry, as fluxing agents in substitution to the feldspar. Ten mixtures with equal ratios of clay and kaolin, proceeding from Bahia and the residue (varying from 30 to 5%) were defined and produced in uniaxial tool die of 60x20mm with approximately 5 mm of thickness and 45MPa compacting pressure. The samples were fired in four different temperatures: 1100 °C, 1150 °C, 1185 °C and 1200 °C during 60 minutes and characterized by means of X-ray fluorescence, X-ray diffraction, gravimetric thermal analysis and differential thermal analysis. The results of water absorption, apparent porosity, linear shrinkage, XRD, dilatometry, flexural strength and SEM were also analysed. The test specimen with addition of 10% of ash fired in 1200 °C resulted in 0.18% water absorption and 40.77 MPa flexural strength, being classified as porcelain stoneware tiles according to ABNT, UNI and ISO norms
Resumo:
This paper aims to present the feasibility of using a composite using discarded material from the cultivation of banana tree (pseudostem), which is fibrillated together with synthetic resin replacing glass fiber to be used in structural elements that do not demand large mechanical stress such as reservoirs, troughs, domes, sewage pipes etc.. For this, there were studies about the mechanical properties of a composite made with polyester resin and fiber of banana tree (Musa sp, musac), in which the splints were removed from the pseudostem, being made fibrillation by hand, with the aid of a brush steel, followed by natural drying. After treatment for cleaning and removal of wax, the fiber was cut into pieces of approximately 60 mm to 100 mm, for, together with synthetic resin, make cards of a features fiber composite with random orientation relative to the weight of the resin. We used three different percentages of fiber (3%, 6% and 9%), in order to make a comparative study between them and what would be the one with the best performance. Were manufactured specimens of each material and then subjected to uniaxial tensile tests, three point bending, moisture absorption and thermal characteristics. The results show that, in general, the use of banana tree fiber is feasible simply by an improvement in the production process (machining of the procedure) and greater care in the manufacture of parts
Resumo:
This work proposes the development of an innovative material made from a vegetable polyurethane matrix and load of industrial waste, from retread tires, for thermal insulation and environmental comfort. Experimental procedures are presented, as well as the results of the thermal and acoustic performance of this composite material, made from an expansive foam derived from the castor seed oil and fiber of scrap tires. The residue was treated superficially with sodium hydroxide, to eliminate contaminants, and characterized macroscopically and microscopically. Samples were produced with addition of residues at levels of 5%, 10%, 15% and 20% by weight, for determination of thermal properties: conductivity, heat capacity and thermal diffusivity, sound absortion index and density. The results were compared to commercially available thermal insulation and sound absorbing products. According to the analysis of results, it was concluded that the developed composite presents characteristics that qualify it as a thermal insulation with superior performance, compared to commercial available insulation, and sound absorption capacity greater than the castor oil polyurethane s, without addition of the residue
Resumo:
In the industry of ceramic in Rio G. do Norte, tile stands out as the most manufactured product by this industry, being the intermittent kiln abóbada and caieira the principal type of kiln used in burning. There was a need to make a study of the influence exerted by the type of kiln in which tiles are burnt in their thermo physical properties. The analysis started with 24 raw samples of tile, which was split in two groups of 12 samples and burnt in Abóbada and Caieira kiln. Besides that, it was made study of the tax of heat transfer to the environment (for each kiln). After having been burnt the samples were taken for laboratory analysis. The properties verified were impermeability, determination of dry mass, absorption of water, the load of bending rupture and its geometric characteristics, the tests were conducted following the currents standards. The tests were carried out according to the ABNT - NBR 15310. The calculation of the rate of heat transfer showed that the abóbada kiln is more efficient than the Caieira, however the results of tests on the samples revealed no superiority of one over another sample. So the furnace had no influence on the performance of the ceramic tiles
Resumo:
In the State of Rio Grande do Norte potteries are distributed in several counties in the four meso, which are: West Potiguar, Center Potiguar, Agreste Potiguar and East Portiguar. The ceramics, mostly, are responsible for products used in construction as bricks, tiles and white brick and wood used as fuel. This paper had a primary focus in the region of Seridó. The furnaces in this region, used to manufacture bricks are configured Caieira and Valt, in most of them using principles rustic, usually operated in an empirical way, using principles of control rather primitive, predominantly visual control. The focus of this study was to analyze the differences in the thermophysical, mechanical and geometric characteristics of bricks produced by Caieira and vault furnaces, using the NBR 15720 and the evaluation of energy efficiency in both furnaces. Thermophysical characteristics were analyzed through tests to determine the water absorption obtained from the difference between dry mass and wet mass of the sample and analysis of the thermal gradient, the mechanical characteristics from determination of the compressive strength of ceramic brick popularly known as bricks and also analyzed the geometrical characteristics of the bricks in order to verify the homogeneity of manufacturing. The tests showed that the energy difference of the two furnaces is not considered responsible for a significant difference in the properties of the products