111 resultados para Simulação computacional
Resumo:
The complexity of the Phenomenon of fluid flow in porous way causes a difficulty in its explicit description. Different in the cases where the flow is given through a pipe, where it is possible to measure the length and diameter of the pipe and to determine their ability to flow as a function of pressure, which is a complicated task in porous way. However, we try to approach clearly the equations used to conjecture the behavior of fluid flow in porous way. We made use of the Gambit to create a fractal geometry with the fluent we give the contour´s conditions we would want to analyze the data. The triangular mesh was created; it makes interactions with the discs of different rays, as barriers putted in the geometry. This work presents the results of a simulation with a flow of viscous fluids (oilliquid). The oil flows in a porous way constructed in 2D. The behavior evaluation of the fluid flow inside the porous way was realized with graphics, images and numerical results used for different datas analysis. The study was aimed in relation at the behavior of permeability (k) for different fractal dimensions. Taking into account the preservation of porosity and increasing the fractal distribution of the discs. The results showed that k decreases when we increase the numbers of discs, although the porosity is the same for all generations of the first simulation, in other words, the permeability decreases when we increase the fractality. Well, there are strong turbulence in the flow each time we increase the number of discs and this hinders the passage of the same to the exit. These results permitted to put in evidence how the permeability (k) is affected in a porous way with obstacles distributed in a diversified form. We also note that k decreases when we increase the pressure variation (P) within geometry. So, in front of the results and the absence of bibliographic subsidies about other theories, the work realized here can possibly by considered the unpublished form to explain and reflect on how the permeability is changed when increasing the fractal dimension in a porous way
Resumo:
In this work we present a mathematical and computational modeling of electrokinetic phenomena in electrically charged porous medium. We consider the porous medium composed of three different scales (nanoscopic, microscopic and macroscopic). On the microscopic scale the domain is composed by a porous matrix and a solid phase. The pores are filled with an aqueous phase consisting of ionic solutes fully diluted, and the solid matrix consists of electrically charged particles. Initially we present the mathematical model that governs the electrical double layer in order to quantify the electric potential, electric charge density, ion adsorption and chemical adsorption in nanoscopic scale. Then, we derive the microscopic model, where the adsorption of ions due to the electric double layer and the reactions of protonation/ deprotanaç~ao and zeta potential obtained in modeling nanoscopic arise in microscopic scale through interface conditions in the problem of Stokes and Nerst-Planck equations respectively governing the movement of the aqueous solution and transport of ions. We developed the process of upscaling the problem nano/microscopic using the homogenization technique of periodic structures by deducing the macroscopic model with their respectives cell problems for effective parameters of the macroscopic equations. Considering a clayey porous medium consisting of kaolinite clay plates distributed parallel, we rewrite the macroscopic model in a one-dimensional version. Finally, using a sequential algorithm, we discretize the macroscopic model via the finite element method, along with the interactive method of Picard for the nonlinear terms. Numerical simulations on transient regime with variable pH in one-dimensional case are obtained, aiming computational modeling of the electroremediation process of clay soils contaminated
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
The northern portion of the Rio Grande do Norte State is characterized by intense coastal dynamics affecting areas with ecosystems of moderate to high environmental sensitivity. In this region are installed the main socioeconomic activities of RN State: salt industry, shrimp farm, fruit industry and oil industry. The oil industry suffers the effects of coastal dynamic action promoting problems such as erosion and exposure of wells and pipelines along the shore. Thus came the improvement of such modifications, in search of understanding of the changes which causes environmental impacts with the purpose of detecting and assessing areas with greater vulnerability to variations. Coastal areas under influence oil industry are highly vulnerable and sensitive in case of accidents involving oil spill in the vicinity. Therefore, it was established the geoenvironmental monitoring of the region with the aim of evaluating the entire coastal area evolution and check the sensitivity of the site on the presence of oil. The goal of this work was the implementation of a computer system that combines the needs of insertion and visualization of thematic maps for the generation of Environmental Vulnerability maps, using techniques of Business Intelligence (BI), from vector information previously stored in the database. The fundamental design interest was to implement a more scalable system that meets the diverse fields of study and make the appropriate system for generating online vulnerability maps, automating the methodology so as to facilitate data manipulation and fast results in cases of real time operational decision-making. In database development a geographic area was established the conceptual model of the selected data and Web system was done using the template database PostgreSQL, PostGis spatial extension, Glassfish Web server and the viewer maps Web environment, the GeoServer. To develop a geographic database it was necessary to generate the conceptual model of the selected data and the Web system development was done using the PostgreSQL database system, its spatial extension PostGIS, the web server Glassfish and GeoServer to display maps in Web
Resumo:
The Baixa grande fault is located on the edge of the S-SW Potiguar Rift. It limits the south part of Umbuzeiro Graben and the Apodi Graben. Although a number of studies have associated the complex deformation styles in the hanging wall of the Baixa Grande Fault with geometry and displacement variations, none have applied the modern computational techniques such as geometrical and kinematic validations to address this problem. This work proposes a geometric analysis of the Baixa Fault using seismic interpretation. The interpretation was made on 3D seismic data of the Baixa Grande fault using the software OpendTect (dGB Earth Sciences). It was also used direct structural modeling, such as Analog Direct Modeling know as Folding Vectors and, 2D and 3D Direct Computational Modeling. The Folding Vectors Modeling presented great similarity with the conventional structural seismic interpretations of the Baixa Grande Fault, thus, the conventional interpretation was validated geometrically. The 2D direct computational modeling was made on some sections of the 3D data of the Baixa Grande Fault on software Move (Midland Valley Ltd) using the horizon modeling tool. The modeling confirms the influence of fault geometry on the hanging wall. The Baixa Grande Fault ramp-flat-ramp geometry generates synform on the concave segments of the fault and antiform in the convex segments. On the fault region that does not have segments angle change, the beds are dislocated without deformation, and on the listric faults occur rollover. On the direct 3D computational modeling, structural attributes were obtained as horizons on the hanging wall of the main fault, after the simulation of several levels of deformation along the fault. The occurrence of structures that indicates shortening in this modeling, also indicates that the antiforms on the Baixa Grande Fault were influenced by fault geometry
Resumo:
The northern coast of Rio Grande do Norte State (RN) shows areas of Potiguar basin with high activity in petroleum industry. With the goal of avoiding and reducing the accident risks with oil it is necessary to understand the natural vulnerability, mapping natural resources and monitoring the oil spill. The use of computational tools for environmental monitoring makes possible better analyses and decisions in political management of environmental preservation. This work shows a methodology for monitoring of environment impacts, with purpose of avoiding and preserving the sensible areas in oil contact. That methodology consists in developing and embedding an integrated computational system. Such system is composed by a Spatial Decision Support System (SDSS). The SDSS shows a computational infrastructure composed by Web System of Geo-Environmental and Geographic Information - SWIGG , the System of Environmental Sensibility Maps for Oil Spill AutoMSA , and the Basic System of Environmental Hydrodynamic ( SisBAHIA a System of Modeling and Numerical Simulating SMNS). In a scenario of oil spill occurred coastwise of Rio Grande do Norte State s northern coast, the integration of such systems will give support to decision agents for managing of environmental impacts. Such support is supplied through a system of supporting to spatial decisions