113 resultados para Rochas carbonáticas
Resumo:
The Serra do Caramuru and Tapuio stocks, located in the extreme NE of Rio Piranhas-Seridó Domain (RN), are representative of the Ediacaran-Cambrian magmatism, an important magmatic feature of the Brasilian / Panafrican orogeny of the Borborema Province. These bodies are lithologically similar, intrusive in paleoproterozoic gneiss embasement, being separated by a thin belt of mylonitic orthogneiss. The field relations show a magmatic stratigraphy initiated by dioritic facies that coexists with the porphyritic granitic and equigranular granitic I facies, and less frequently with equigranular granitic II facies. These rocks are crosscut by late granitic dykes and sheets with NE-SW / NNE-SSW orientation. The dioritic facies (diorite, quartz diorite, quartz monzodiorites, tonalite and granodiorite) is leucocratic to melanocratic, rich in biotite and hornblende. The granitic facies are hololeucocratic to leucocratic, and have biotite ± hornblende. Petrographic and geochemical (whole rock) data, especially from Serra do Caramuru pluton, suggest fractionation of zircon, apatite, clinopyroxene (in diorites), opaque minerals, titanite, biotite, hornblende, allanite, plagioclase, microcline and garnet (in dykes). The behavior of trace elements such as Zr, La and Yb indicates that the dioritic magma does not constitute the parental magma for the granitic facies. On the other hand, the granitic facies seems to be cogenetic to each other, displaying differentiation trends and very similar rare earth elements (REE) spectra [12.3≤(La/Yb)N≤190.8; Eu/Eu*=0.30-0.68]. Field relationships and REE patterns [6.96≤(La/Yb)N≤277.8; Eu/Eu*=0.18-0.58] demonstrate that the granitic dykes and sheets are not cogenetically related to the Serra do Caramuru magmatism. The dioritic facies is metaluminous (A/CNK = 0.88-0.74) and shoshonitic, whereas the granitic ones are metaluminous to peraluminous (A/CNK = 1.08-0.93) and high potassium calc-alkaline. Dykes and sheets are strictly peraluminous (A/CNK = 1.01-1.04). Binary diagrams relating compatible and incompatible trace elements and microtextures indicate the fractional crystallization as the dominant mechanism of magmatic evolution of the various facies. The Serra do Caramuru and Tapuio stocks have well preserved magmatic fabric, do not show metamorphic minerals and are structurally isotropic, showing crosscutting contact with the ductile fabric of the basement. These observations lead to interpretate a stage of relative tectonic stability, consistent with the orogenic relaxation period of the Brasiliano / Pan-African orogeny. Chemical plots involving oxides and trace elements indicate late to post-collisional emplacement. In this context, the assumed better mechanism to describe the stocks emplacement within an extensional T Riedel joint, with ENE-WSW extensional vector. The U-Pb zircon age of 553 ± 10 Ma allows correlating the Serra do Caramuru magmatism to the group of post-collisional bodies, equigranular high potassium calc-alkaline granites of the NE of Rio Piranhas-Seridó Domain.
Resumo:
The natural gas is an alternative source of energy which is found underground in porous and permeable rocks and being associated or not to the oil. Its basic composition includes methane, other hydrocarbon and compounds such as carbon dioxide, nitrogen, sulphidric gas, mercaptans, water and solid particles. In this work, the dolomite mineral, a double carbonate of calcium and magnesium whose the chemical formula is CaMg(CO3)2, was evaluated as adsorbent material. The material was characterized by granulometric analysis, X-ray fluorescence, X-ray diffraction, thermogravimetric analysis, differential thermal analysis, specific surface area, porosity, scanning electronic microscopy and infrared spectroscopy. Then the material was functionalized with diethanolamine (dolomite+diethanolamine) and diisopropylamine (dolomite+diisopropylamine). The results indicated that the adsorbents presented appropriate physiochemical characteristics for H2S adsorption. The adsorption tests were accomplished in a system coupled to a gas chromatograph and the H2S monitoring in the output of the system was accomplished by a pulsed flame photometric detector (PFPD). The adsorbents presented a significant adsorption capacity. Among the analyzed adsorbents, the dolomite+diethanolamine presented the best capacity of adsorption. The breakthrough curves obtained proved the efficiency of this process
Resumo:
In this work we developed a computer simulation program for physics porous structures based on programming language C + + using a Geforce 9600 GT with the PhysX chip, originally developed for video games. With this tool, the ability of physical interaction between simulated objects is enlarged, allowing to simulate a porous structure, for example, reservoir rocks and structures with high density. The initial procedure for developing the simulation is the construction of porous cubic structure consisting of spheres with a single size and with varying sizes. In addition, structures can also be simulated with various volume fractions. The results presented are divided into two parts: first, the ball shall be deemed as solid grains, ie the matrix phase represents the porosity, the second, the spheres are considered as pores. In this case the matrix phase represents the solid phase. The simulations in both cases are the same, but the simulated structures are intrinsically different. To validate the results presented by the program, simulations were performed by varying the amount of grain, the grain size distribution and void fraction in the structure. All results showed statistically reliable and consistent with those presented in the literature. The mean values and distributions of stereological parameters measured, such as intercept linear section of perimeter area, sectional area and mean free path are in agreement with the results obtained in the literature for the structures simulated. The results may help the understanding of real structures.
Resumo:
Metal-ceramic interfaces are present in tricone drill bits with hard ceramic inserts for oil well drilling operations. The combination of actions of cutting, crushing and breaking up of rocks results in the degradation of tricone drill bits by wear, total or partial rupture of the drill bit body or the ceramic inserts, thermal shock and corrosion. Also the improper pressfitting of the ceramic inserts on the bit body may cause its total detachment, and promote serious damages to the drill bit. The improvement on the production process of metal-ceramic interfaces can eliminate or minimize some of above-mentioned failures presented in tricone drill bits, optimizing their lifetime and so reducing drilling metric cost. Brazing is a widely established technique to join metal-ceramic materials, and may be an excellent alternative to the common mechanical press fitting process of hard ceramic inserts on the steel bit body for tricone drill bit. Wetting phenomena plays an essential role in the production of metal/ceramic interfaces when a liquid phase is present in the process. In this work, 72Silver-28Copper eutectic based brazing alloys were melted onto zirconia, silicon nitride and tungsten carbide/Co substrates under high vacuum. Contact angle evolution was measured and graphically plotted, and the interfaces produced were analysed by SEM-EDX. The AgCu eutectic alloy did not wet any ceramic substrates, showing high contact angles, and so without chemical interaction between the materials. Better results were found for the systemns containing 3%wt of titanium in the AgCu alloy. The presence os titanium as a solute in the alloy produces wettable cand termodinamically stable compounds, increasing the ceramics wetting beahviour
Resumo:
The sharp consumption of natural resources by the construction industry has motivated numerous studies concerning the application of waste to replace partially or fully, some materials, such as aggregates, thereby reducing the environmental impact caused by the extraction of sand and crushing process. The application of stone dust from crushing process arising as an aggregate for the production of Portland cement concrete is a viable alternative in view of the high cost of natural sands, in addition to the environmental damage which causes its operation to the environment. The stone dust has reduced cost compared to natural sand because it is produced in the beds of their own quarries, which are usually located close to major urban centers. This study examined the feasibility of using stone dust from the crushing of rock gneisses in the state of Bahia, replacing natural quartz sand. In the development of scientific study was conducted to characterize physical and chemical raw materials applied and molded cylindrical specimens , using as reference values Fck 20, Fck 25 and Fck 30 MPa ( resistance characteristic of the concrete after 28 days) in following compositions stone powder: 10%, 30%, 50 %, 100% and 100% with additive. The specimens were cured and subjected to the tests of compressive strength and water absorption, then the samples were subjected to the tests of X-ray diffraction and scanning electron microscopy. The results obtained showed that the composition with 10% stone powder showed the best results regarding the physical and mechanical tests performed, confirming the reduction in compressive strength and increased water uptake increased as the content of the powder stone in the concrete composition
Resumo:
The industrial production of ornamental rocks and the burning of coffee husk generate waste that is discarded into the environment. However, with the study of the incorporation of these residues in ceramic products, may be found an alternative to reducing environmental impacts and detrimental effects on human health caused by its indiscriminate disposal of waste in nature. Thus, this work aimed to study the addition of ashes of the coffee husk and granite residue in matrix of red ceramic. The raw materials were dry milled and sieved to mesh 100. To characterize the raw materials were carried out analyzes of X-ray diffraction (XRD), X-ray fluorescence (XRF), particle size analysis (PSA), differential thermal analysis (DTA) and thermogravimetric analysis (TG). Six formulations were prepared where the clay content was kept constant (70%wt) and ashes contents and granite residue varied from 10, 15, 20 and 30%. Dilatometrics analyzes were performed at four selected formulations, containing them: 100% clay (A100); 70% clay and 30% ashes (A70C30); 70% clay and 30% granite residue (A70G30); and 70% clay, 15% granite residue and 15% ashes (A70G15C15). The samples were prepared by uniaxial compaction with pressure of 25 MPa, and fired at temperatures of 800°C, 850ºC, 900ºC, 950ºC, 1000ºC and 1100°C. Assays were performed to determine the linear shrinkage of burning (LSB), water absorption (WA), apparent porosity (AP), density (D) and tensile bending. Also were performed analyzes of X-ray diffraction (XRD) and scanning electron microscopy (SEM) of the samples fired. The formulations incorporating granite residue and/or ashes reached the required limits of water absorption according to NBR 15270-1 and NBR 15310 and tensile bending according to classical literature (SANTOS, 1989) necessary for the production of tiles and ceramic block for masonry sealing
Resumo:
The Rio do Peixe Basin represents a main basin of northeastern Brazil and pioneering work positioned the rocks of this basin in the Early Cretaceous. However, a recent study, based on integrated pollen analysis from three wells, found an unprecedented siliciclastic sedimentary section, in the region, of early Devonian age. Therefore, the present study aims a detailed petrographic and petrological analysis of this devonian section, in the Rio do Peixe Basin and proposes a diagenetic evolution, to understand the characteristics of the porous system, identify the main reservoir petrofacies with the main factors impacting on the quality of these rocks as reservoirs and a quick study on the provenance of this section. The petrographic study was based on samples obtained from subsurface and surface. The diagenetic evolution of petrofacies and its identification were based only on subsurface samples and the study of provenance was based on surface samples. The thin sections were prepared from sandstones, pelites and sandstones intercalated with pelites. The original detrital composition for this section is arcosean and the main diagenetic processes that affected these rocks occur in various depths and different conditions, which resulted in extensive diagenetic variety. The following processes were identified: early fracture and healing of grains; albitization of K-feldspar and plagioclase; siderite; precipitation of silica and feldspar; mechanical infiltration of clay and its transformation to illite/esmectite and illite; autigenesis of analcime; dissolution; autigenesis of chlorite; dolomite/ferrous dolomite/anquerite; apatite; calcite; pyrite; titanium minerals and iron oxide-hidroxide. The occurrence of a recently discovered volcanism, in the Rio do Peixe Basin, may have influenced the diagenetic evolution of this section. Three diagenetic stages affected the Devonian section: eo, meso and telodiagenesis. This section is compositionally quite feldspathic, indicating provenance from continental blocks, between transitional continental and uplift of the basement. From this study, we observed a wide heterogeneity in the role of the studied sandstones as reservoirs. Seven petrofacies were identified, taking into account the main diagenetic constituent responsible for the reduction of porosity. It is possible that the loss of original porosity was influenced by intense diagenesis in these rocks, where the main constituent for the loss of porosity are clays minerals, oxides and carbonate cement (calcite and dolomite)
Resumo:
This Thesis presents the elaboration of a methodological propose for the development of an intelligent system, able to automatically achieve the effective porosity, in sedimentary layers, from a data bank built with information from the Ground Penetrating Radar GPR. The intelligent system was built to model the relation between the porosity (response variable) and the electromagnetic attribute from the GPR (explicative variables). Using it, the porosity was estimated using the artificial neural network (Multilayer Perceptron MLP) and the multiple linear regression. The data from the response variable and from the explicative variables were achieved in laboratory and in GPR surveys outlined in controlled sites, on site and in laboratory. The proposed intelligent system has the capacity of estimating the porosity from any available data bank, which has the same variables used in this Thesis. The architecture of the neural network used can be modified according to the existing necessity, adapting to the available data bank. The use of the multiple linear regression model allowed the identification and quantification of the influence (level of effect) from each explicative variable in the estimation of the porosity. The proposed methodology can revolutionize the use of the GPR, not only for the imaging of the sedimentary geometry and faces, but mainly for the automatically achievement of the porosity one of the most important parameters for the characterization of reservoir rocks (from petroleum or water)