148 resultados para resíduo de granito


Relevância:

10.00% 10.00%

Publicador:

Resumo:

To produce porcelain tiles fluxing agents are used in order to obtain a liquid phase during firing. This liquid phase fills the pores decreasing porosity, water absorption and contributes to material densification. In the porcelain tiles industry, feldspar is the main flux material used, with quantities ranging between 35 and 50%. Studies focus on the discovery of materials with flux characteristics that can reduce the consumption of feldspar by porcelain tiles industry. In this context, the coffee husk ashes, a residue obtained when coffee husks are burned to produce heat for the dryers during the processing of the green fruit, have as main chemical constituents potassium, calcium and magnesium, giving them characteristics of fluxing material. Brazil is the largest coffee producer in the world and is responsible for over 30% of the world s production. In this work a physical treatment of coffee husk ash was carried out in order to eliminate the organic matter and, after this, two by-products were obtained: residual wastes R1 and R2. Both residues were added separately as single fluxes and also in association with feldspar in mixtures with raw materials collected in a porcelain industry located in Dias d Ávila-Ba. The addition of these residues aimed to contribute to the reduction of the consumption of feldspar in the production of porcelain tiles. Specimens were produced with dimensions of 60 mm x 20 mm x 6 mm in an uniaxial die with compacting pressure of 45 MPa. The samples were heated to a temperature of 1200 °C, for 8 minutes. Tests were performed to characterize the raw materials by XRF, XRD, particle size analysis, DTA and TGA and, additionally, the results of the physical properties of water absorption, apparent porosity, linear shrinkage, density, dilatometry, flexural strength and SEM of sintered body were analyzed. Additions of less than 8% of the residue R1 contributed to the decrease of porosity, but the mechanical strength of the samples was not satisfactory. Additions of 5% the R2 residue contributed significantly to decrease the water absorption and apparent porosity, and also to increase the mechanical strength. Samples with addition of feldspar associated with the R2 residue, in proportions of 6.7% of R2 and 6.7% of feldspar, led to results of water absorption of 0.12% and mechanical strength of 46 MPa, having parameters normalized to the manufacture of porcelain stoneware tiles

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among the industries, those that produce ceramic porcelain for use in construction industry and oil, during the exploration and production period, play an important role in the production of waste. Much research has been carried out both by academia and the productive sector, sometimes reintroducing them in the same production line that generated them, sometimes in areas unrelated to their generation, as in the production of concrete and mortar for the construction, for example, but each one in an isolated way. In this research, the aim is to study the combined incorporation of the waste drill cuttings of oil well and the residue of the polishing of porcelain, generated in the final stage of finishing of this product in a clay matrix, for the production of red pottery, specifically bricks, ceramic blocks and tiles. The clay comes from the municipality of São Gonçalo, RN, the drilling waste is from the Natal basin, in Rio Grande do Norte, and the residue of the polishing proceeds from a ceramic porcelain of the State of Paraíba. For this purpose, we used a mixture of a plastic clay with a non-plastic, in a ratio of 50% each, settling formulations with the addition of these two residues in this clay matrix. In the formulations, both residues were incorporated with a minimum percentage of 2.5% and maximum of 12.5%, varying from 2.5% each, in each formulation, which the sum of the waste be no more than 15%. It should be noted that the residue of the polishing of ceramic porcelain is a IIa class (not inert). The materials were characterized by XRF, XRD, TG, DTA, laser granulometry and the plasticity index. The technological properties of water absorption, apparent porosity, linear shrinkage of burning, flexural tensile strength and bulk density were evaluated after the sintering of the pieces to 850 °C, 950 °C and 1050 °C, with a burning time of 3 hr, 3 hr and 30 minutes, and 3 hr and 50 minutes, respectively, with a heating rate of 10 °C/minute, for all formulations and landing of 30 minutes. To better understand the influence of each residue and temperature on the evaluated properties, we used the factorial planning and its surfaces of response for the interpretation of the results. It was found that the temperature has no statistical significance at a 95% of reliability level in flexural tensile strength and that it decreases the water absorption and the porosity, but increases the shrinkage and the bulk density. The results showed the feasibility of the desired incorporation, but adjusting the temperature to each product and formulation, and that the temperatures of 850 °C and 950 °C were the one that responded to the largest number of formulations

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At present, the material of choice for performing aesthetic dental prosthetic work is in the ceramic. Among them, the ceramic base of stabilized zirconia with 3% yttria (3Y - TZP) stand out for having excellent physical and mechanical properties. During the machining of blocks of zirconia in the laboratory to prepare the various types of prostheses, much of the material is given off in the form of powder, which is subsequently discarded. The waste of this material results in financial loss, reflecting higher final cost treatment for patients, as well as damage to the environment, thanks to the processes involved in the manufacture and disposal of the ceramic. This research, pioneered the recycling of zirconium oxide powder obtained during milling of dental crowns and bridges, we highlight the social and environmental aspects and aims to establish a protocol for the reuse of waste (powder of zirconia Zirkonzahn® system) discarded to obtain a new block of compacted zirconia to maintain the same mechanical and microstructural properties of commercial high-cost imported material. To compare with the commercial material, samples were uniaxially (20 MPa) and isostatically (100 MPa), and its mechanical and microstructural characterization was performed through tests of density, porosity, dilatometry, X-ray diffraction (XRD), hardness, fracture toughness, resistance to fracture electron microscopy (SEM) and analysis of grain size. The results observed in the samples were isostatically pressed similiares those obtained with samples from the commercial material demonstrating the viability of the process

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cementation operation consists in an extremely important work for the phases of perforation and completion of oil wells, causing a great impact on the well productivity. Several problems can occur with the cement during the primary cementation, as well as throughout the productive period. The corrective operations are frequent, but they are expensive and demands production time. Besides the direct cost, prejudices from the interruption of oil and gas production till the implementation of a corrective operation must be also taken into account. The purpose of this work is the development of an alternative cement paste constituted of Portland cement and porcelainized stoneware residue produced by ceramic industry in order to achieve characteristics as low permeability, high tenacity, and high mechanical resistance, capable of supporting various operations as production or oil wells recuperation. Four different concentration measures of hydrated paste were evaluated: a reference paste, and three additional ones with ceramic residue in concentrations of the order of 10%, 20% and 30% in relation to cement dough. High resistance and low permeability were found in high concentration of residues, as well as it was proved the pozolanic reactivity of the residue in relation to Portland cement, which was characterized through x-ray and thermogravimetry assays. It was evident the decrease of calcium hydroxide content, once it was substituted by formation of new hydrated products as it was added ceramic residue

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The worldwide concern regarding the use of sustainable energy and preserving the environment are determining factors in the search for resources and alternative sources of energy and therefore fuel less aggressive nature. In response to these difficulties Biodiesel has emerged as a good solution because it is produced from renewable sources, produces burns cleaner and is easily reproducible. This work was synthesized with biodiesel oil, sunflower via homogeneous catalysis in the presence of KOH, with and without the use of BHT and subsequently added to the blends BX (a proportion of biodiesel X = 5, 10, 15 and 20 %). Atmospheric distillation of the analysis, performed in blends with and without BHT were collected residue generated by each sample and performed a study heat from the thermogravimetric analysis at a heating rate of 10 °C*min-1, nitrogen atmosphere and heating to 600 °C. According to the specifications of Resolution N 7/2008 for biodiesel, it was found that the synthesized material was in accordance with the specifications. For blends showed that the samples are in accordance with the Resolution of ANP N 42/2009. From the TG / DTG curves of the samples of biodiesel, blends and waste can be seen that these show a single loss of thermal decomposition concerning constituents present in each sample. The blends without BHT with ratios of 5%, 10% and 15% biodiesel showed a lower amount of waste (1,07%; 1,09% e 1,10%) to mineral diesel (1,15%). Therefore, it is concluded that the addition of biodiesel with diesel mineral can improve some physico-chemical parameters, but also, depending on the added amount, decreasing the amount of waste generated. This fact is of great importance because the carbonaceous residue can cause problems in mechanical equipment and parts for vehicles, causing more frequent maintenance, and this is not desirable

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The growing world demand for energy supplied by fossil fuels, a major contributor to the emission of pollutants into the atmosphere and causing environmental problems, has been encouraging governments and international organizations to reflect and encourage the use of alternative renewable sources. Among these new possibilities deserves attention biodiesel, fuel cleaner and easy to reproduce. The study of new technologies involving that source is necessary. From this context, the paper aims at analyzing the thermal stability by thermogravimetric analysis, of the waste generated from atmospheric distillation of mixtures with ratios of 5, 10, 15 and 20% palm biodiesel in diesel with and without addition of BHT antioxidant. It was synthesized biodiesel through palm oil, via homogeneous catalysis in the presence of KOH, with and without the use of BHT and subsequently added to the diesel common indoor type (S1800) from a gas station BR. The diesel was already added with 5% biodiesel, and thus the proportions used for these blends were subtracted from the existing ratio in diesel fuel, resulting in the following proportions palm oil biodiesel: 0% (B5), 5% (B10), 10 % (B15) and 15% (B20). From atmospheric distillation analysis, performed in mixtures with and without BHT were collected residue generated by each sample and performed a thermal study from the thermogravimetric analysis at a heating rate of 10 °C.min-1, nitrogen atmosphere and heating to 600 ° C. According to the specifications of Resolution No. 7/2008 for biodiesel, it was found that the material was synthesized in accordance with the specifications. For mixtures, it was noted that the samples were in accordance with the ANP Resolution No. 42/2009. Given the TG / DTG curves of the samples of waste mixtures with and without BHT antioxidant was able to observe that they showed a single stage of thermal decomposition attributed to decomposition of heavy hydrocarbons and esters and other heavier constituents of the waste sample weighed. The thermal behavior of residues from atmospheric distillation of mixtures of diesel / biodiesel is very important to understand how this affects the proper functioning of the engine. A large amount of waste can generate a high content of particulate material, coke formation and carbonaceous deposits in engine valves, compromising their performance

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The production of synthesis gas has received renewed attention due to demand for renewable energies to reduce the emissions of gases responsible for enhanced greenhouse effect. This work was carried out in order to synthesize, characterize and evaluate the implementation of nickel catalysts on MCM-41 in dry reforming reactions of methane. The mesoporous molecular sieves were synthesized using as silica sources the tetraethyl orthosilicate (TEOS) and residual glass powder (PV). The sieves were impregnated with 10% nickel to obtain the metallic catalysts (Ni/MCM-41). These materials were calcined and characterized by Thermogravimetric Analysis (TG), Infrared spectroscopy (FTIR), X-ray Diffraction (XRD), Temperature-Programmed Reduction (TPR) and N2 Adsorption/Desorption isotherms (BET/BJH). The catalytic properties of the samples were evaluated in methane dry reforming with CO2 in order to produce synthesis gas to be used in the petrochemical industry. The materials characterized showed hexagonal structure characteristic of mesoporous material MCM-41 type, being maintained after impregnation with nickel. The samples presented variations in the specific surface area, average volume and diameter of pores based on the type of interaction between the nickel and the mesoporous support. The result of the the catalytic tests showed conversions about 91% CO2, 86% CH4, yelds about 85% CO and 81% H2 to Ni/MCM-41_TEOS_C, and conversions about 87% CO2, 82% CH4, yelds about 70% CO and 59% H2 to Ni/MCM-41_PV_C. The similar performance confirms that the TEOS can be replaced by a less noble materials

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The preparation of cement slurries for offshore well cementing involves mixing all solid components to be added to the mixing water on the platform. The aim of this work was to study the formulation of pre-prepared dry mixtures, or grouts, for offshore oilwell cementing. The addition of mineral fillers in the strength of lightweight grouts applied for depths down to 400 m under water depths of 500 m was investigated. Lightweight materials and fine aggregates were selected. For the choice of starting materials, a study of the pozzolanic activity of low-cost fillers such as porcelain tile residue, microsilica and diatomaceous earth was carried out by X-ray diffraction and mechanical strength tests. Hardened grouts containing porcelain tile residue and microsilica depicted high strength at early ages. Based on such preliminary investigation, a study of the mechanical strength of grouts with density 1.74 g/cm3 (14.5 lb/gal) cured initially at 27 °C was performed using cement, microsilica, porcelain tile residue and an anti-foaming agent. The results showed that the mixture containing 7% of porcelain tile residue and 7% of microsilica was the one with the highest compressive strength after curing for 24 hours. This composition was chosen to be studied and adapted for offshore conditions based on testes performed at 4 °C. The grout containing cement, 7% of porcelain tile residue, 7% of active silica and admixtures (CaCl2), anti-foaming and dispersant resulted satisfactory rheology and mechanical strength after curing for 24 hours of curing

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aiming to reduce and reuse waste oil from oily sludge generated in large volumes by the oil industry, types of nanostructured materials Al-MCM-41 and Al-SBA-15, with ratios of Si / Al = 50, were synthesized , and calcined solids used as catalysts in the degradation of oily sludge thermocatalytic oil from oilfield Canto do Amaro, in the state of Rio Grande do Norte. Samples of nanostructured materials were characterized by thermogravimetric analysis (TG / DTG), X-ray diffraction (XRD), scanning electron microscopy (SEM), absorption spectroscopy in the infrared Fourier transform (FT-IR) and adsorption nitrogen (BET). The characterization showed that the synthesized materials resulted in a catalyst nanostructure, and ordered pore diameter and surface area according to existing literature. The oily sludge sample was characterized by determining the API gravity and sulfur content and SARA analysis (saturates, aromatics, resins and asphaltenes). The results showed a material equivalent to the average oil with API gravity of 26.1, a low sulfur content and considerable amount of resins and asphaltenes, presented above in the literature. The thermal and catalytic degradation of the oily sludge oil was performed from room temperature to 870 ° C in the ratios of heating of 5, 10 and 20 ° C min-1. The curves generated by TG / DTG showed a more accelerated degradation of oily sludge when it introduced the nanostructured materials. These results were confirmed by activation energy calculated by the method of Flynn-Wall, in the presence of catalysts reduced energy, in particular in the range of cracking, showing the process efficiency, mainly for extraction of lightweight materials of composition of oily sludge, such as diesel and gasoline

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oily sludge is a complex mix of hydrocarbons, organic impurities, inorganic and water. One of the major problems currently found in petroleum industry is management (packaging, storage, transport and fate) of waste. The nanomaterials (catalysts) mesoporous and microporous are considered promising for refining and adsorbents process for environment protection. The aim of this work was to study the oily sludge from primary processing (raw and treated) and vacuum residue, with application of thermal analyses technique (pyrolysis), thermal and catalytic pyrolysis with nanomaterials, aiming at production petroleum derived. The sludge and vacuum residue were analyzed using a soxhlet extraction system, elemental analysis, thin layer chromatography, thermogravimetry and pyrolysis coupled in gas chromatography/mass spectrometry (Py GC MS). The catalysts AlMCM-41, AlSBA-15.1 e AlSBA-15.2 were synthesized with molar ratio silicon aluminum of 50 (Si/Al = 50), using tetraethylorthosilicante as source of silicon and pseudobuhemita (AlOOH) as source of aluminum. The analyzes of the catalysts indicate that materials showed hexagonal structure and surface area (783,6 m2/g for AlMCM-41, 600 m2/g for AlSBA-15.1, 377 m2/g for AlSBA-15.2). The extracted oily sludge showed a range 65 to 95% for organic components (oil), 5 to 35% for inorganic components (salts and oxides) and compositions different of derivatives. The AlSBA-15 catalysts showed better performance in analyzes for production petroleum derived, 20% increase in production of kerosene and light gas oil. The energy potential of sludge was high and it can be used as fuel in other cargo processed in refinery

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main aim of this study was to compare the procedure for dehydration of Gracilaria birdiae prepared handmade and laboratory, collected in the northern coast of Rio Grande do Norte. The sample was collected in the Rio do Fogo beach in march 2009. The sample collected followed by two processing, the first the material prepared in laboratory was air-dried at 50°C for 24 hours in air-flow oven. The second the handmade sample was air-dried on the sun during three days. The extract was prepared in three different solvents: ethanol, hydroethanol and water, resulting in ethanol, hidroethanol and aqueous extracts from handmade and laboratory sample. In according with results only the ethanol extract was fractionated yielding the fractions hexane, dichloromethane and ethyl acetate fractions. The different process to obtain Gracilaria birdiae resulted in the samples with different shades. The soluble solids content was higher in the laboratory sample. The chemical composition the both samples were characterized by presenting a considerable amounts of carbohydrates, with amior percentage protein and ash, respectively, in the handmade and laboratory sample. In two samples showed a low content of lipids and the lipid profile showed a higher proportion of monounsaturated fatty acids, with the absence polyunsaturated handmade sample. The phytochemical screening by chemical reactions showed the presence of flavonoids, tannins, alkaloids and saponins the laboratory sample, presenting a greater diversity of bioactive compounds. Through of the analysis by thin layer chromatography was possible to identify the phytosterols β-sitosterol and stigmasterol the both samples, also suggest the presence of β-carotene and chlorophyll α the laboratory sample. The levels of total phenolics and flavonoids were more significant in the ethanol extract of the laboratory sample. The in vitro lethality showed that extracts of the laboratory sample and handmade from 125 to 500 μg/ mL, respectively, were highly lethal. In the evaluation of antioxidant capacity by the system β-carotene/ácido linoleic method and by DPPH radical scavernging assay, the ethanol extract from the laboratory process showed significantly greater activity than the other extracts, being and the first and second methods, respectively, lower and equivalent to the synthetic antioxidant BHT. The handmade ethanol extract has not demonstrated skill in deactivating free radicals, but showed activity in inhibiting lipid peroxidation, although the values were significantly lower than the laboratory sample. We conclude that the dehydration process in the laboratory is the most efficient technique to maintenance of the chemical composition present in the seaweed, providing beneficial properties such as antioxidant capacity. We emphasize that this property can be explored with the objective of adding commercial value to the final product, which will promote the expansion of production of this seaweed in the community of Rio do Fogo

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the increase in cement consumption, it has quickly become one of the inputs most consumed by mankind over the last century. This has caused an increase in CO2 emissions, as cement production releases large quantities of this gas into the atmosphere. Adding this fact to the growing consciousness of environmental preservation, it has led to a search for alternatives to cement to complement its derivatives, in the form of waste materials like the ashes. This research aimed to analyze the properties of mortars in fresh and hardened state with partial replacement of Portland cement by residual algaroba wood ash (CRLA) potteries produced by the state of Rio Grande do Norte. The CRLA was collected and sieved, where part of it was ground and characterized in comparison with that just sifted, being characterized according to its chemical composition, grain size, fineness, density, bulk density and index of pozzolanic activity. It was found that the wood ash does not act as pozzolan, and grinding it has not changed its characteristics compared to those just sifted, not justifying its use. Two traces were adopted for this research: 1:3 (cement: fine sand) and 1:2:8 (cement: hydrated lime: medium sand); both in volume, using as materials the CRLA just sifted, CP II F-32 Portland cement, CH-I hydrated lime, river sand and water from the local utility. For each trace were adopted six percentages of partial replacement of cement for wood ash: 0% (control) 5%, 7%, 10%, 12% and 15%. In the fresh state, the mortars were tested towards their consistency index and mass density. In the hardened state, they were tested towards their tensile strength in bending, compressive strength and tensile adhesion strength, and its mass density in the hardened state. The mortar was also analyzed by scanning electron microscopy and X-ray diffraction. Furthermore, it was classified according to NBR 13281 (2005). The results showed that up to a content of 5% substitution and for both traces, the residual algaroba wood ash can replace Portland cement without compromising the mortars microstructure and its fresh and hardened state

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O desenvolvimento das grandes cidades tem gerado um dos maiores desafios ambientais enfrentados na atualidade, que é a gestão eficaz de resíduos sólidos. A grande variedade e quantidade dos resíduos produzidos diariamente, tem tornado a destinação ecologicamente correta e sustentável destes materiais cada vez mais difícil. Dentre os vários resíduos produzidos diariamente destacam-se os lodos oriundos de estações de tratamento de esgotos, denominados de lodos de esgoto, cuja destinação final segura tem sido discutida mundialmente em diversos estudos, tendo em vista que a tendência de geração deste tipo de resíduo tende a crescer com o aumento do saneamento das cidades. Uma forma amplamente difundida nos países desenvolvidos para destinação dos lodos de esgoto é a incineração destes materiais para posterior envio das cinzas geradas neste processo a aterros sanitários. Porém, tem-se estudado formas alternativas de disposição, destacando-se a utilização destas cinzas como adição mineral em concretos e argamassas de cimento Portland. Sabe-se que o desempenho de resíduos de incineração como adição mineral em matrizes cimentícias, depende em grande parte da capacidade de atuação destes materiais como elementos pozolânicos ou como fileres, podendo estas características serem influenciadas pela temperatura de queima ao qual estes resíduos foram submetidos. Neste sentido, verificou-se com esta pesquisa a influência da temperatura empregada na queima dos lodos sépticos no índice de atividade pozolânica (IAP) das cinzas geradas como resíduo deste processo, aqui denominadas de cinzas de lodo séptico (CLS), sendo em seguida, avaliadas as implicações técnicas e microestruturais da utilização deste resíduo em teores de 10%, 20% e 30% como adição mineral em concretos de cimento Portland. Os resultados obtidos demonstraram não haver alterações significativas no IAP das CLS em decorrência da temperatura utilizada durante o processo de queima dos lodos de esgoto. Além disso, verificou-se que embora a utilização das CLS tenham provocado diminuição da trabalhabilidade dos concretos para todos os teores de incorporação, estas melhoraram a resistência mecânica à compressão, o índice de vazios, a absorção de água e o comportamento microestrutural dos concretos contendo 10% e 20% de resíduo

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of sewage sludge as a raw material falls within the waste recycling key in the current process model environmental sustainability .Waste recycling has been consolidated as a sustainable environmentally sound technical solution, and. Despite showing very variable composition and characteristics, sewage sludge, can be considered as a residue with a high recycling potential in the building sector. In this paper the feasibility of using sewage sludge ash was studied in addition to Portland cement mortar in 1:3 mass considered the standard dash. This gray additions were studied in proportions of 5%, 10 %, 15 %, 20 %, 25% and 30% by mass of cement. The methodology was focused on the characterization of materials by physical, chemical , mechanical , environmental and morphological followed by the production of mortar tests ,and finalized by the characterization tests of mortar in the fresh state, through the consistency index, content of entrained air, bulk density and water retention, and in the hardened state by bulk density, water absorption by capillarity capillarity coefficient, compressive strength, tensile strength in bending ,tensile bond strength and microstructural analysis for percentages of 0 to 20%. After comparing with the standard mortar mortars with addition of ash, it is concluded that the ash of sewage sludge did not impair the integrity and properties of mortars with addition, including increasing resistance to compression and tension, being 20% more indicated percentage. Thus, it becomes feasible the addition of sewage sludge ash in Portland cement mortar for the trait studied