108 resultados para nitrito de sódio
Resumo:
This study aimed to analyze the effect of a saline solution on growth and chemical composition of Atriplex nummularia, shrubby plant, absorbing salts used in the diet of animals and the management of water and saline soils. These plant seedlings were planted and grown in a reserved area at the Federal University of Rio Grande do Norte. The plantation was divided into two blocks, in which one of them was irrigated with saline solution with a concentration of 2840 mgL-1 of NaCl and the second group was irrigated with drinking water. After six months, the plants were collected, harvested and divided into three parts: leaf, thin and thick stem. Monthly, dimension measurements were carried out for cataloging the growth of Atriplex. Ion Chromatography (IC) and Optical Emission Spectroscopy Inductively Coupled Plasma (ICP-OES) were used to analyze the chemical composition of the partition plant parts. The results of these analyses revealed that an absorption process of anions and cations by Atriplex nummularia plant during its growth was achieved, in particular by a higher concentration of sodium and chloride ions. Scanning electron microscopy images showed and confirmed the presence of small crystals on the leaf surface. Electrical conductivity and pH measurements of the aerial parts of the plant were carried out and these results showed that the leaf is the plant part where there is a largest concentration of ions. In addition, measurements of specific surface were obtained from irrigated plants with saline solution, achieving higher surface area, in all cases. Plant dimensions obtained monthly showed that the plants irrigated with water grew 5% more than those plants irrigated with saline solution. Based on results obtained, Atriplex plant showed a higher potential to survive and adapt to environments (aquatic or geological) with high levels of salinity and this property can be used as a tool for removing salts/metals from industrial contaminated soils and effluents.
Resumo:
In this work, the plant species Copernicia prunifera (Miller) H. E. Moore (carnauba), naturally occurring which prevails in the northeast region of Brazil was the subject of studies aiming its use as external coating of pipelines used in petroleum industry. The part of the plant worked were the leaves, also called straw, which were coated with resinous material. For this purpose, it was necessary to evaluate the effectiveness of the use of acrylic resins in the straw carnauba coating. The properties of the untreated carnauba straw and chemically treated with sodium hydroxide, hexane and carbon tetrachloride were investigated by ATRFTIR, SEM and thermal analysis. The first two techniques showed that treatment with solvents has caused major changes in the straw surface, while the thermal analysis indicated that the sodium hydroxide caused variations in thermal stability of straw constituents. Water absorption measurements showed that treatments have accelerated the absorption process and the reduction of contact angle values for treated samples with solvents indicated higher hidrophilicity of straw. The tensile tests showed lower values of elastic modulus and tensile strength for treated samples. Furthermore, coatings using pure commercial resins A and B as well as the formulations with clay were applied in straw and they were examined once again through thermal analysis, water absorption measurements, contact angle and mechanical tests. To analyze the effect of heat ageing, samples were subjected to tensile tests again in order to assess its resistance. The results showed that the resins/clay formulations increased thermal stability of straw, they promoted a good impermeabilization and caused significant decrease in the values of elastic modulus and tensile strength. Evaluating the ageing effect on the mechanical properties, it has been showed good recovery to the coated straw with the formulations A 60 and A 80% in modulus and tensile strength values and elongation at break values have remained very close. It is thus concluded that the carnauba straw can be used as a coating of pipelines with significant cost savings, since there is no need for pretreatment for its use and shows itself as a viable biotechnology alternative, contributing to the quality of coatings material and environment preservation.
Resumo:
Chitosan nanoparticles have been used in several systems for the controlled release of drugs. The aim of this study was to obtain and characterize chitosan nanoparticles prepared by the method of coacervation / precipitation using sodium sulfate at different concentrations as the crosslinking agent. The characterization was done using zeta potential and small angle Xray scattering, SAXS. The dispersions of chitosan were obtained at pH 1 and pH = 3. The results of zeta potential at pH = 1 ranged from +64.8 to +29.27 mV and for pH = 3 they varied from +72.4 to +23.48 mV, indicating that the chain of chitosan is positively charged in acidic pH and the behavior of nanoparticles in terms of surface charge was independent of pH. However, the results indicated a dependence of particle size in relation to pH. This difference in behavior was explained by the influence of enthalpic and entropic components
Resumo:
Corrosion inhibition efficiency of saponified coconut oil (SCO) and sodium dodecilbenzene sulfonate (DBS) surfactants in AISI 1020 carbon steel was evaluated by electrochemical methods. These surfactants were also evaluated as microemulsion systems (SCO-ME and DBS-ME), of O/W type (water-rich microemulsion), in a Winsor IV region. They were obtained according to the following composition: 15% SCO, 15% butanol (30% Co-surfactant/Surfactant C/T), 10% organic phase (FO, kerosene) and 60% aqueous phase (FA). These systems were also used to solubilize the following nitrogenated substances: Diphenylcarbazide (DC), 2,4-dinitro-phenyl-thiosemicarbazide (TSC) and the mesoionic type compound 1,3,4-triazolium-2-thiolate (MI), that were investigated with the purpose of evaluating their anticorrosive effects. Comparative studies of carbon steel corrosion inhibition efficiencies of free DBS and DBS-ME, in brine and acidic media (0.5%), showed that DBS presents better inhibition results in acidic media (free DBS, 89% and DBS-ME, 93%). However, the values obtained for DBS in salted solution (72% free DBS and 77% DBS-ME) were similar to the ones observed for the SCO surfactant in brine (63% free SCO and 74% SCO-ME). Analysis of corrosion inhibition of the nitrogenated substances that were solubilized in the SCO-ME microemulsion system by the linear polarization method in brine (0.5% NaCl) showed that such compounds are very efficient an corrosion inhibitors [DC-ME-SCO (92%), TSC-ME-SCO (93%) and MI-ME-SCO (94%)]
Resumo:
TiTanate NanoTubes (TTNT) were synthesized by hydrothermal alkali treatment of TiO2 anatase followed by repeated washings with distinct degrees of proton exchange. TTNT samples with different sodium contents were characterized, as synthesized and after heattreatment (200-800ºC), by X-ray diffraction, scanning and transmission electron microscopy, electron diffraction, thermal analysis, nitrogen adsorption and spectroscopic techniques like FTIR and UV-Vis diffuse reflectance. It was demonstrated that TTNTs consist of trititanate structure with general formula NaxH2−xTi3O7·nH2O, retaining interlayer water in its multiwalled structure. The removal of sodium reduces the amount of water and contracts the interlayer space leading, combined with other factors, to increased specific surface area and mesopore volume. TTNTs are mesoporous materials with two main contributions: pores smaller than 10 nm due to the inner volume of nanotubes and larger pores within 5-60 nm attributed to the interparticles space. Chemical composition and crystal structure of TTNTs do not depend on the average crystal size of the precursor TiO2-anatase, but this parameter affects significantly the morphology and textural properties of the nanostructured product. Such dependence has been rationalized using a dissolution-recrystallization mechanism, which takes into account the dissolution rate of the starting anatase and its influence on the relative rates of growth and curving of intermediate nanosheets. The thermal stability of TTNT is defined by the sodium content and in a lower extent by the crystallinity of the starting anatase. It has been demonstrated that after losing interlayer water within the range 100-200ºC, TTNT transforms, at least partially, into an intermediate hexatitanate NaxH2−xTi6O13 still retaining the nanotubular morphology. Further thermal transformation of the nanostructured tri- and hexatitanates occurs at higher or lower temperature and follows different routes depending on the sodium content in the structure. At high sodium load (water washed samples) they sinter and grow towards bigger crystals of Na2Ti3O7 and Na2Ti6O13 in the form of rods and ribbons. In contrast, protonated TTNTs evolve to nanotubes of TiO2(B), which easily convert to anatase nanorods above 400ºC. Besides hydroxyls and Lewis acidity typical of titanium oxides, TTNTs show a small contribution of protonic acidity capable of coordinating with pyridine at 150ºC, which is lost after calcination and conversion into anatase. The isoeletric point of TTNTs was measured within the range 2.5-4.0, indicating behavior of a weak acid. Despite displaying semiconductor characteristics exhibiting typical absorption in the UV-Vis spectrum with estimated bandgap energy slightly higher than that of its TiO2 precursor, TTNTs showed very low performance in the photocatalytic degradation of cationic and anionic dyes. It was concluded that the basic reason resides in its layered titanate structure, which in comparison with the TiO2 form would be more prone to the so undesired electron-hole pair recombination, thus inhibiting the photooxidation reactions. After calcination of the protonated TTNT into anatase nanorods, the photocatalytic activity improved but not to the same level as that exhibited by its precursor anatase
Resumo:
A partially hydrolyzed polyacrylamide (HPAM) is a copolymer composed of acrylamide and sodium acrylate. Due to its wide range of applications there are different methods for its quantification and characterization in solution systems. Evaluation of C* is important to describe the transition from dilute to semi-dilute, behavior, when the solution will have its characteristic viscosity at concentrations above C*. This dissertation describes the determination of the critical concentration of overlap C* by potentiometry of partially hydrolyzed polyacrylamide - HPAM under acidic conditions. Based on the law of mass action and the proper treatment of the constant of aggregate formation, polymer molecular weight, degree of polymerization and hydrolysis were calculated. The inflection point was determined by the intersection of the resulting equation and mathematical development, statistically satisfy the experimental points relating the number of moles of monomers (n), equilibrium constant of formation of the entanglements (K*), pH, C* and acidity constant of the polymer (Ka). The viscometric parameters of C* showed a percentage difference compared to potentiometers. The results for the determination of C*, and degree of copolymerization molar mass proved to be a simple alternative for the characterization of polymers with protonated monomers and water soluble
Resumo:
The aim of this work was to study a series of 11 different compositions of Ti-Zr binary alloys resistance to aggressive environment, i. e., their ability to keep their surface properties and mass when exposed to them as a way to evaluate their performance as biomaterials. The first stage was devoted to the fabrication of tablets from these alloys by Plasma-Skull casting method using a Discovery Plasma machine from EDG Equipamentos, Brazil. In a second stage, the chemical composition of each produced tablet was verified. In a third stage, the specimen were submitted to: as-cast microstructure analysis via optical and scanning electron microscopy (OM and SEM), x-ray dispersive system (EDS) chemical analysis via SEM, Vickers hardness tests for mechanical evaluation and corrosion resistence tests in a 0.9% NaCl solution to simulate exposition to human saliva monitored by open circuit potential and polarization curves. From the obtained results, it was possible to infer that specimens A1 (94,07 wt% Ti and 5,93% wt% Zr), A4 (77,81 wt % Ti and 22,19 wt % Zr) and A8 (27,83 wt% Ti and 72,17 wt% Zr), presented best performance regarding to corrosion resistance, homogeneity and hardness which are necessary issues for biomaterials to be applied as orthopedic and odontological prosthesis
Resumo:
The process of salting and drying in the sun is used to preserve meat since the beginning of civilization. There is evidence that this preservation technique has arisen in Egypt, between 4,000 and 5,000 years ago. In our country, according to literature, was the first industrial product that gave the appearance of beef jerky, beef being produced, where about 70% to 75% of the muscle is composed of water, where it will be around 45% as a final product, according to the law in his article RIISPOA No. 432 provides that the jerky should contain no more than this amount of moisture in the muscular portion, or more than 15% of total ash with tolerance of up to 5% variation . Besides this parameter, proteins, lipids, ash, and minerals were analyzed in samples before and after the manufacturing process to know the content of these nutrients. Since these are considered important in product quality, thus the concentration in these samples, respectively, in the flesh Front (CD and CHD) before and after the manufacturing process for humidity were respectively 75.28% and 47.38% , the protein was 14.17 and 22.20 g / 100 g sample, 6.360 and 4.251 of lipids g/100g of the sample, and the ashes 0.974 9.144 g/100g sample, minerals like calcium and 4.074 30 , 06 ppm, sódio0, 055 and 5.401 g / L, sodium chloride, 0.139 and 13.74 g / L, potassium 237.5 and 166.8 ppm, 1.721 and 3.295 ppm iron, 0.143 and 0.135 ppm phosphorus, zinc and 4.690 6.905 ppm; magnésio14, 63 e13, 75 ppm manganese .017 e0, 007ppm, copper 0.057 and 0.039 ppm in the case of needle-type meat (CPA and CHPA), 68.04% and 44.17%, protein 13 , 72, and 24.42 g/100g of sample, 1.137 in the ash and 12.68 g / 100g of sample, and the minerals calcium 17.11 and 12.89 ppm; sódio0, 123 and 4.871 g / L, sodium chloride 0.312 and 12.39 g / L, potassium 305.3 and 182.1 ppm; ferro1, 817 and 1.513 ppm, 0.273 and 0.139 ppm phosphorus, zinc 6.305 and 4.783 ppm, 27.95 and 15.85 ppm magnesium, manganese and 0.025 0.011 ppm, 0.057 and 0.143 ppm copper and chromium 0.014 and 0.068 ppm
Resumo:
Two methodologies were proposed to obtain micro and macroporous chitosan membranes, using two different porogenic agents. The methodologies proved to be effective in control the porosity as well as the pore size. Thus, microporous membranes were obtained through the physical blend of chitosan and polyethylene oxide (PEO) on an 80:20 (m/m) ratio, respectively, followed by the partial PEO solubilization in water at 80 ◦C. Macroporous chitosan membranes with asymmetric morphology were obtained using SiO2 as the porogenic agent. In this case, chiotsan-silica ratios used were 1:1, 1:3 and 1:5 (m/m). Membranes characterization were carried out by SEM (scanning electronic microscopy), X-ray diffraction, Fourier Transform Infrared Spectroscopy (FTIR), Thermal analysis (TG, DTG , DSC and DMTA). Permeability studies were performed using two model drugs: sodium sulfamerazine and sulfametoxipyridazine. By transmission FTIR it was possible to confirm the complete removal of SiO2. The SEM images confirmed the porous formation for both micro and macroporous membranes and also determined their respective sizes. By thermal analysis it was possible to show differences related with water sorption capacity as well as thermal stability for both membranes. DTG and DSC allowed evidencing the PEO presence on microporous membranes. The absorbance x time curves obtained on permeability tests for micro and macroporous membranes showed a linear behavior for both drugs in all range of concentration used. It was also observed, through P versus C curves, an increase in permeability of macroporous membranes according to the increase in porosity and also a decrease on P with increase in drug concentration. The influences of the drug molecular structure, as well as test temperatures were also evaluated
Resumo:
Among the polymers that stand out most in recent decades, chitosan, a biopolymer with physico-chemical and biological promising properties has been the subject of a broad field of research. Chitosan comes as a great choice in the field of adsorption, due to their adsorbents properties, low cost and abundance. The presence of amino groups in its chain govern the majority of their properties and define which application a sample of chitosan may be used, so it is essential to determine their average degree of deacetylation. In this work we developed kinetic and equilibrium studies to monitor and characterize the adsorption process of two drugs, tetracycline hydrochloride and sodium cromoglycate, in chitosan particles. Kinetic models and the adsorption isotherms were applied to the experimental data. For both studies, the zeta potential analyzes were also performed. The adsorption of each drug showed distinct aspects. Through the studies developed in this work was possible to describe a kinetic model for the adsorption of tetracycline on chitosan particles, thus demonstrating that it can be described by two kinetics of adsorption, one for protonated tetracycline and another one for unprotonated tetracycline. In the adsorption of sodium cromoglycate on chitosan particles, equilibrium studies were developed at different temperatures, allowing the determination of thermodynamic parameters
Resumo:
The underground natural gas found associated or not with oil is characterized by a mixture of hydrocarbons and residual components such as carbon dioxide (CO2), nitrogen gas (N2) and hydrogen sulfide (H2S), called contaminants. The H2S especially promotes itself as a contaminant of natural gas to be associated with corrosion of pipelines, to human toxicity and final applications of Natural Gas (NG). The sulfur present in the GN must be fully or partially removed in order to meet the market specifications, security, transport or further processing. There are distinct and varied methods of desulfurization of natural gas processing units used in Natural Gas (UPGN). In order to solve these problems have for example the caustic washing, absorption, the use of membranes and adsorption processes is costly and great expenditure of energy. Arises on such findings, the need for research to active processes of economic feasibility and efficiency. This work promoted the study of the adsorption of sulfide gas in polymer matrices hydrogen pure and modified. The substrates of Poly(vinyl chloride) (PVC), poly(methyl methacrylate) (PMMA) and sodium alginate (NaALG) were coated with vanadyl phosphate compounds (VOPO4.2H2O), vanadium pentoxide (V2O5), rhodamine B (C28H31N2O3Cl) and ions Co2+ and Cu2+, aiming to the adsorption of hydrogen sulfide gas (H2S). The adsorption tests were through a continuous flow of H2S in a column system (fixed bed reactor) adsorption on a laboratory scale. The techniques used to characterize the adsorbents were Infrared spectroscopy (FTIR), thermogravimetry analysis (TGA), X-ray fluorescence (XRF), the X-ray diffraction (XRD) electron microscopy (SEM). Such work indicates, the results obtained, the adsorbents modified PMMA, PVC and NaALG have a significant adsorptive capacity. The matrix that stood out and had the best adsorption capacity, was to ALG modified Co2+ with a score of 12.79 mg H2S / g matrix
Resumo:
Corrosion usually occurs in pipelines, so that it is necessary to develop new surface treatments to control it. Surfactants have played an outstanding role in this field due to its capacity of adsorbing on metal surfaces, resulting in interfaces with structures that protect the metal at low surfactant concentrations. The appearance of new surfactants is a contribution to the area, as they increase the possibility of corrosion control at specific conditions that a particular oil field presents. The aim of this work is to synthesize the surfactants sodium 12 hydroxyocadecenoate (SAR), sodium 9,10-epoxy-12 hydroxyocadecanoate (SEAR), and sodium 9,10:12,13-diepoxy-octadecanoate (SEAL) and apply them as corrosion inhibitors, studying their action in environments with different salinities and at different temperatures. The conditions used in this work were chosen in order to reproduce oil field reality. The study of the micellization of these surfactants in the liquid-gas interface was carried out using surface tensiometry. It was observed that cmc increased as salt concentration was increased, and temperature and pH were decreased, while cmc decreased with the addition of two epoxy groups in the molecule. Using the values of cmc and the Gibbs equation, the values of Gibbs free energy of adsorption, area per adsorbed molecule, and surface excess were calculated. The surface excess increases as salt concentration and temperature decreases, increasing as pH is increased. The area per adsorbed molecule and the free energy of adsorption decrease with salt concentration, temperature, and pH increase. SAXS results showed that the addition of epoxy group in surfactant structure results in a decrease in the repulsion between the micelles, favoring the formation of more oblong micellar structures, ensuring a better efficiency of metal coverage. The increase in salt and surfactant concentrations provides an increase in micellar diameter. It was shown that the increase in temperature does not influence micellar structure, indicating thermal stability that is advantageous for use as corrosion inhibitor. The results of inhibition efficiency for the surfactants SEAR and SEAL were considered the best ones. Above cmc, adsorption occurred by the migration of micelles from the bulk of the solution to the metal surface, while at concentrations below cmc film formation must be due to the adsorption of semi-micellar and monomeric structures, certainly due to the presence of the epoxy group, which allows side interactions of the molecule with the metal surface. The metal resistance to corrosion presented values of 90% of efficiency. The application of Langmuir and Frumkin isotherms showed that the later gives a better description of adsorption because the model takes into account side interactions from the adsorbing molecules. Wettability results showed that micelle formation on the solid surface occurs at concentrations in the magnitude of 10-3 M, which isthe value found in the cmc study. This value also justifies the maximum efficiencies obtained for the measurements of corrosion resistance at this concentration. The values of contact angle as a function of time suggest that adsorption increases with time, due to the formation of micellar structures on metal surface
Resumo:
The objective of this study was to analyze the oxidative stability of biodiesel from jatropha obtained from different purification processes, three wet processes with different drying (in a vacuum oven, conventional oven and in anhydrous sodium sulfate) and dry (purification with magnesium silicate adsorbent). Raw materials of different qualities (jatropha crop ancient and recent crop) were used. The Jatropha oil was extracted by mechanical extraction and refined. The Jatropha biodiesel was obtained by the transesterification reaction in ethyl route using alkaline catalysis. The biodiesel samples were characterized by analysis of water content, carbon residue, Absorption Spectroscopy in the Infrared Region and Thermogravimetry. Thermogravimetric curves of purified PUsv* PUsq* and had higher initial decomposition temperatures, indicating that the most stable, followed by samples PU* and PUSC*. Besides the sample SP* is a smaller initial temperature, confirming the sample without purification to be less thermally stable. The percentage mass loss of the purified samples showed conversion of about 98.5%. The results of analyzes carbon residue and infrared suggested that contamination by impurities is the main factor for decreased oxidative stability of biodiesel. The oxidative stability was assessed from periodic monitoring, using the techniques of Rancimat, peroxide index, acid value and Pressurized Differential Scanning Calorimetry. Samples of biodiesel from jatropha which showed better oxidative stability were of the best quality raw material and wet scrubbing: PUsq* with dry chemical, using anhydrous sodium sulfate and PUsv* with vacuum drying, which had oxidative stability 6 hours in Rancimat time 0 days, within the limits established by the Technical Regulation No. 4/2012 of the ANP, without the addition of antioxidant, suggesting that these procedures the least influence on the oxidative stability of biodiesel
Resumo:
A new self-sustainable film was prepared through the sol-gel modified method, previously employed in our research group; sodium alginate was used as the polymer matrix, along with plasticizer glycerol, doped with titanium dioxide (TiO2) and tungsten trioxide (WO3). By varying WO3 concentration (0,8, 1,6, 2,4 and 3,2 μmol) and keeping TiO2 concentration constant (059 mmol), it was possible to study the contribution of these oxides on the obtained films morphological and electrical properties. Self-sustainable films have analyzed by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XDR), Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and Electrochemical Impedance Spectroscopy (EIS). By the IR specters, it was possible identify the TiO2, and posteriorly WO3, addition has provided dislocation of alginate characteristics bands to smaller vibrations frequencies indicating an electrostatic interaction between the oxides and the polymer matrix. Diffractograms show predominance of the amorphous phase in the films. SEM, along with EDX, analysis revealed self-sustainable films showed surface with no cracks and relative dispersion of the oxides throughout the polymer matrix. From Impedance analysis, it was observe increasing WO3 concentration to 2,4 μmol provided a reduction of films resistive properties and consequent improvement of conductive properties
Resumo:
The knowledge of the rheological behavior of microemulsionated systems (SME) is of fundamental importance due to the diversity of industrial applications of these systems. This dissertation presents the rheological behavior of the microemulsionated system formed by RNX 95/alcohol isopropyl/p-toulen sodium sulfonate/kerosene/distilled water with the addition of polyacrylamide polymer. It was chosen three polymers of the polyacrylamide type, which differ in molar weight and charge density. It was studied the addition of these polymers in relatively small concentration 0,1% in mass and maximum concentration of 2,0%. It was made analysis of flow to determine the appearing viscosities of the SME and rheological parameters applying Bingham, Ostwald de Waale and Herschell-Buckley models. The behavior into saline environment of this system was studied for a solution of KCl 2,0%, replacing the distilled water. It was determined the behavior of microemulsions in relation with the temperature through curves of flow in temperatures of 25 to 60ºC in variations of 5ºC. After the analysis of the results the microemulsion without the addition of polymer presented a slight increase in its viscosity, but it does not mischaracterize it as a Newtonian fluid. However the additive systems when analyzed with low concentration of polymer adjusted well to the applied models, with a very close behavior of microemulsion. The higher concentration of the polymer gave the systems a behavior of plastic fluid. The results of the temperature variation point to an increase of viscosity in the systems that can be related to structural changes in the micelles formed in the own microemulsion without the addition of polymer