96 resultados para Radiação sincrotronica


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Were synthesized spinel-type ferrites with general formula Ni0,8Mg0.2-xMxFe2O4, where M represents the doping Mn, Co or Mn + Co simultaneously, x ranges for the values 0.02, 0.05 and 0.1. The value of x was divided by 2 in cases where M equals Mn and Co conjugates. We used the citrate precursor method and heat treatment to obtain the phases at 1100°C. The materials were characterized by XRD, TGA/ DTGA, SEM, MAV and reflectivity measurements by the method of waveguide. Powders to 350°C/3.5 h were crystalline and nanosized. According to the results this temperature all powders have a percentage of ferrite phase over 90%. The composition had the addition of Mn and Co simultaneously showed a higher percentage of secondary phase NiO, 5.8%. The TGA/DTGA curves indicate that this sample reached phase (s) crystalline (s) at lowest temperatures. The X-ray diffractograms of the samples calcined at 350°C and 1100°C were treated with the Rietveld refinament technique. The powders calcined at 1100 °C/3h in air show to be 100% except spinel phase composition with 0.02 doping. The micrographs show clusters of particles with sizes smaller than 1 μm in calcination temperature of 1100°C which agreed with the result of Rietveld refinement. In the compositions doped with Mn were higher values of magnetization (45.90 and 53.20 Am2/kg), which did not cause high microwave absorption. The theoretical calculation of magnetization (MT) was consistent with the results, considering that there was agreement between the increase of magnetization experimental and theoretical. It was observed that there was the interrelation of the final effect of absorption with the thickness of MARE, the composition of ferrimagnetic materials and in particular the specific values of frequency. The analysis shows that the reflectivity increases in the concentration of cobalt increased the frequency range and also for absorption 10.17 GHz and 84%, respectively. The best result of chemical homogeneity and the value of 2.96 x 10-2 tesla coercive field were crucial for high performance ferrite absorber with 0.1 cobalt. The Cobalt has high magnetocrystalline anisotropy, it is associated with an increased coercive field, Hc. Therefore, this property improves the results of reflectivity of spinel ferrites

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Contamination by complex mixtures of various origins has been explored and studied for decades. Radon is a naturally occurring environmental contaminant that causes carcinogenic effects. These emissions can cause mutations in the lung tissue, which can initiate a carcinogenic process. Thus the dam Creek Falls, located in the municipality of Lajes Pintadas, was chosen for the development of this study, since cancer rates in the region reach 9% of the population annually, with this, the main objective of this study was evaluate the mutagenicity and toxicity of Riacho da Cachoeira damunder the influence of radon. The methodology ecotoxicological tests were performed with Ceriodaphinia dubia, as well as tests with Tradescantia pallida genotoxicologicos and Oreochromis niloticus. To understand how the population of Pintadas Slabs realizes the environment, we performed a study of environmental perception. The test results indicated that the reservoir water is toxic to test organimos exposed, found heavy metals, chloride, total and fecal coliforms as well as radon levels above the maximum allowed under Brazilian law. These results can be justified because it is so complex samples composed of different compounds that interact only with each other or causing synergistic effects. It was concluded that the dam Creek Waterfall, is contaminated with radon, as well as heavy metals, coliforms and chloride, causing toxic effects to the natural community. Thus, further studies should be performed with the human population of the region, to verify that the high rates of cancer in the population of the municipality may be linked to the presence of natural radiation. Thus, it is expected that the competent bodies that administer the municipality of Lajes Pintadas take reasonable steps to minimize risks and ensure the health of the community that still makes use of the weir

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The great interest observed in wireless communication systems has required the development of new configurations of microstrip antennas, because they are easily built and integrated to other microwave circuit components, which is suitable for the construction and development of planar antenna arrays and microwave integrated circuits. This work presents a new configuration of tapered microstrip antenna, which is obtained by impressing U-slots on the conducting patch combined with a transmission line matching circuit that uses an inset length. It is shown that the use of U-slots in the microstrip antenna conducting patch excites new resonating modes, that gives a multiband characteristic for the slotted microstrip antenna, that is suitable for applications in communication systems that operates several frequencies simultaneously. Up to this date, the works reported in the literature deals with the use of Uslotted microstrip rectangular antennas fed by a coaxial probe. The properties of a linear array of microstrip patch tapered antennas are also investigated. The main parameters of the U slotted tapered microstrip antennas are investigated for different sizes and locations of the slots impressed on the conducting patch. The analysis of the proposed antenna is performed by using the resonant cavity and equivalent transmission line methods, in combination with a parametric study, that is conducted by the use of the Ansoft Designer, a commercial computer aided microwave software well known by its accuracy and efficiency. The mentioned methods are used to evaluate the effect in the antennas parameters, like resonant frequency and return loss, produced by variations of the antenna structural parameters, accomplished separately or simultaneously. An experimental investigation is also developed, that consists of the design, construction and measurement of several U slotted microstrip antenna prototypes. Finally, theoretical and simulated results are presented that are in agreement with the measured ones. These results are related to the resonating modes identification and to the determination of the main characteristics of the investigated antennas, such as resonant frequency, return loss, and radiation pattern

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this dissertation is the development of a general formalism to analyze the thermodynamical properties of a photon gas under the context of nonlinear electrodynamics (NLED). To this end it is obtained, through the systematic analysis of Maxwell s electromagnetism (EM) properties, the general dependence of the Lagrangian that describes this kind of theories. From this Lagrangian and in the background of classical field theory, we derive the general dispersion relation that photons must obey in terms of a background field and the NLED properties. It is important to note that, in order to achieve this result, an aproximation has been made in order to allow the separation of the total electromagnetic field into a strong background electromagnetic field and a perturbation. Once the dispersion relation is in hand, the usual Bose-Einstein statistical procedure is followed through which the thermodynamical properties, energy density and pressure relations are obtained. An important result of this work is the fact that equation of state remains identical to the one obtained under EM. Then, two examples are made where the thermodynamic properties are explicitly derived in the context of two NLED, Born-Infelds and a quadratic approximation. The choice of the first one is due to the vast appearance in literature and, the second one, because it is a first order approximation of a large class of NLED. Ultimately, both are chosen because of their simplicity. Finally, the results are compared to EM and interpreted, suggesting possible tests to verify the internal consistency of NLED and motivating further developement into the formalism s quantum case

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of the elementary excitations such as photons, phonons, plasmons, polaritons, polarons, excitons and magnons, in crystalline solids and nanostructures systems are nowdays important active field for research works in solid state physics as well as in statistical physics. With this aim in mind, this work has two distinct parts. In the first one, we investigate the propagation of excitons polaritons in nanostructured periodic and quasiperiodic multilayers, from the description of the behavior for bulk and surface modes in their individual constituents. Through analytical, as well as computational numerical calculation, we obtain the spectra for both surface and bulk exciton-polaritons modes in the superstructures. Besides, we investigate also how the quasiperiodicity modifies the band structure related to the periodic case, stressing their amazing self-similar behavior leaving to their fractal/multifractal aspects. Afterwards, we present our results related to the so-called photonic crystals, the eletromagnetic analogue of the electronic crystalline structure. We consider periodic and quasiperiodic structures, in which one of their component presents a negative refractive index. This unusual optic characteristic is obtained when the electric permissivity and the magnetic permeability µ are both negatives for the same range of angular frequency ω of the incident wave. The given curves show how the transmission of the photon waves is modified, with a striking self-similar profile. Moreover, we analyze the modification of the usual Planck´s thermal spectrum when we use a quasiperiodic fotonic superlattice as a filter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior