108 resultados para Programa de Desenvolvimento Educacional
Resumo:
The natural raw materials acquired special importance beside the mineral raw materials with the need for using alternative sources to oil, because they can be used to produce biopolymers. Gelatin, produced from the denaturation of collagen, and starch, an abundant polysaccharide in various plants, are examples of biopolymers which have several technological applications, especially in films. The objective of this work is to produce polymeric bioblends with gelatin and corn starch using two types of gelatin: commercial bovine gelatin and gelatin produced from mechanically separated flesh of tilapia (Oreochromis niloticus). For the extraction of tilapia gelatin 3 distinct pretreatments, followed by extraction in distilled water under heating were performed. The properties of gelatin extracted were similar to bovine gelatin, and the differences can be explained by the difference in extraction processes and sources. Blends of commercial gelatin and starch were produced in an internal mixer from a Haake torque rheometer, to study the behavior of the gelatin mixture with starch, thus, the same compositions were processed by twin screw extrusion, to define the mixing parameters. Subsequently, the extrusion of blends of tilapia gelatin and corn starch was carried out in the same twin screw extruder. The physico-chemical, rheological and morphological properties of the blends with thermoplastic starch and gelatin were studied. It was found that various properties vary linearly with increasing concentration of the components. The blends produced are immiscible, and among the two gelatins, tilapia gelatin showed a better interfacial adhesion with the corn starch. Regarding the morphology, gelatins formed the dispersed phase in all compositions studied, even in compositions rich in starch. Can be concluded that the procedure for tilapia gelatin extraction is feasible and advantageous, and the increasing in its scale to a reactor of 30 liters is possible, with a satisfactory yield. The bioblends of bovine gelatin/corn starch and tilapia gelatin/corn starch were successfully produced, and the processing conditions were appropriate
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
The artificial lifting of oil is needed when the pressure of the reservoir is not high enough so that the fluid contained in it can reach the surface spontaneously. Thus the increase in energy supplies artificial or additional fluid integral to the well to come to the surface. The rod pump is the artificial lift method most used in the world and the dynamometer card (surface and down-hole) is the best tool for the analysis of a well equipped with such method. A computational method using Artificial Neural Networks MLP was and developed using pre-established patterns, based on its geometry, the downhole card are used for training the network and then the network provides the knowledge for classification of new cards, allows the fails diagnose in the system and operation conditions of the lifting system. These routines could be integrated to a supervisory system that collects the cards to be analyzed
Resumo:
The primary cementing is an important step in the oilwell drilling process, ensuring the mechanical stability of the well and the hydraulic isolation between casing and formation. For slurries to meet the requirements for application in a certain well, some care in the project should be taken into account to obtain a cement paste with the proper composition. In most cases, it is necessary to add chemicals to the cement to modify its properties, according to the operation conditions and thus obtain slurries that can move inside the jacket providing a good displacement to the interest area. New technologies of preparation and use of chemicals and modernization of technological standards in the construction industry have resulted in the development of new chemical additives for optimizing the properties of building materials. Products such as polycarboxylate superplasticizers provide improved fluidity and cohesion of the cement grains, in addition to improving the dispersion with respect to slurries without additives. This study aimed at adapting chemical additives used in civil construction to be used use in oilwell cement slurries systems, using Portland cement CPP-Special Class as the hydraulic binder. The chemical additives classified as defoamer, dispersant, fluid loss controller and retarder were characterized by infrared absorption spectroscopy, thermogravimetric analyses and technological tests set by the API (American Petroleum Institute). These additives showed satisfactory results for its application in cement slurries systems for oil wells. The silicone-based defoamer promoted the reduction of air bubbles incorporated during the stirring of the slurries. The dispersant significantly reduced the rheological parameters of the systems studied. The tests performed with the fluid loss controller and the retarder also resulted in suitable properties for application as chemical additives in cement slurries
Resumo:
In the last decades, the oil, gas and petrochemical industries have registered a series of huge accidents. Influenced by this context, companies have felt the necessity of engaging themselves in processes to protect the external environment, which can be understood as an ecological concern. In the particular case of the nuclear industry, sustainable education and training, which depend too much on the quality and applicability of the knowledge base, have been considered key points on the safely application of this energy source. As a consequence, this research was motivated by the use of the ontology concept as a tool to improve the knowledge management in a refinery, through the representation of a fuel gas sweetening plant, mixing many pieces of information associated with its normal operation mode. In terms of methodology, this research can be classified as an applied and descriptive research, where many pieces of information were analysed, classified and interpreted to create the ontology of a real plant. The DEA plant modeling was performed according to its process flow diagram, piping and instrumentation diagrams, descriptive documents of its normal operation mode, and the list of all the alarms associated to the instruments, which were complemented by a non-structured interview with a specialist in that plant operation. The ontology was verified by comparing its descriptive diagrams with the original plant documents and discussing with other members of the researchers group. All the concepts applied in this research can be expanded to represent other plants in the same refinery or even in other kind of industry. An ontology can be considered a knowledge base that, because of its formal representation nature, can be applied as one of the elements to develop tools to navigate through the plant, simulate its behavior, diagnose faults, among other possibilities
Resumo:
In the Hydrocarbon exploration activities, the great enigma is the location of the deposits. Great efforts are undertaken in an attempt to better identify them, locate them and at the same time, enhance cost-effectiveness relationship of extraction of oil. Seismic methods are the most widely used because they are indirect, i.e., probing the subsurface layers without invading them. Seismogram is the representation of the Earth s interior and its structures through a conveniently disposed arrangement of the data obtained by seismic reflection. A major problem in this representation is the intensity and variety of present noise in the seismogram, as the surface bearing noise that contaminates the relevant signals, and may mask the desired information, brought by waves scattered in deeper regions of the geological layers. It was developed a tool to suppress these noises based on wavelet transform 1D and 2D. The Java language program makes the separation of seismic images considering the directions (horizontal, vertical, mixed or local) and bands of wavelengths that form these images, using the Daubechies Wavelets, Auto-resolution and Tensor Product of wavelet bases. Besides, it was developed the option in a single image, using the tensor product of two-dimensional wavelets or one-wavelet tensor product by identities. In the latter case, we have the wavelet decomposition in a two dimensional signal in a single direction. This decomposition has allowed to lengthen a certain direction the two-dimensional Wavelets, correcting the effects of scales by applying Auto-resolutions. In other words, it has been improved the treatment of a seismic image using 1D wavelet and 2D wavelet at different stages of Auto-resolution. It was also implemented improvements in the display of images associated with breakdowns in each Auto-resolution, facilitating the choices of images with the signals of interest for image reconstruction without noise. The program was tested with real data and the results were good
Resumo:
The Wireless Sensor Networks (WSN) methods applied to the lifting of oil present as an area with growing demand technical and scientific in view of the optimizations that can be carried forward with existing processes. This dissertation has as main objective to present the development of embedded systems dedicated to a wireless sensor network based on IEEE 802.15.4, which applies the ZigBee protocol, between sensors, actuators and the PLC (Programmable Logic Controller), aiming to solve the present problems in the deployment and maintenance of the physical communication of current elevation oil units based on the method Plunger-Lift. Embedded systems developed for this application will be responsible for acquiring information from sensors and control actuators of the devices present at the well, and also, using the Modbus protocol to make this network becomes transparent to the PLC responsible for controlling the production and delivery information for supervisory SISAL
Resumo:
The Compound Portland cements are commonly used in construction, among them stand out the CPII-Z, CPII-F and CPIV. These types of cement have limited application on oil well cementing, having its compositional characteristics focused specifically to construction, as cement for use in oil wells has greater complexity and properties covering the specific needs for each well to be coated. For operations of oil wells cementing are used Portland cements designed specifically for this purpose. The American Petroleum Institute (API) classifies cements into classes designated by letters A to J. In the petroleum industry, often it is used Class G cement, which is cement that meets all requirements needed for cement from classes A to E. According to the scenario described above, this paper aims to present a credible alternative to apply the compound cements in the oil industry due to the large availability of this cement in relation to oil well cements. The cements were micro structurally characterized by XRF, XRD and SEM tests, both in its anhydrous and hydrated state. Later technological tests were conducted to determine the limits set by the NBR 9831. Among the compound cements studied, the CPII-Z showed satisfactory properties for use in primary and secondary operations of oil wells up to 1200 meters cementing
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
The demand for alternative sources of energy drives the technological development so that many fuels and energy conversion processes before judged as inadequate or even non-viable, are now competing fuels and so-called traditional processes. Thus, biomass plays an important role and is considered one of the sources of renewable energy most important of our planet. Biomass accounts for 29.2% of all renewable energy sources. The share of biomass energy from Brazil in the OIE is 13.6%, well above the world average of participation. Various types of pyrolysis processes have been studied in recent years, highlighting the process of fast pyrolysis of biomass to obtain bio-oil. The continuous fast pyrolysis, the most investigated and improved are the fluidized bed and ablative, but is being studied and developed other types in order to obtain Bio-oil a better quality, higher productivity, lower energy consumption, increased stability and process reliability and lower production cost. The stability of the product bio-oil is fundamental to designing consumer devices such as burners, engines and turbines. This study was motivated to produce Bio-oil, through the conversion of plant biomass or the use of its industrial and agricultural waste, presenting an alternative proposal for thermochemical pyrolysis process, taking advantage of particle dynamics in the rotating bed that favors the right gas-solid contact and heat transfer and mass. The pyrolyser designed to operate in a continuous process, a feeder containing two stages, a divisive system of biomass integrated with a tab of coal fines and a system of condensing steam pyrolytic. The prototype has been tested with sawdust, using a complete experimental design on two levels to investigate the sensitivity of factors: the process temperature, gas flow drag and spin speed compared to the mass yield of bio-oil. The best result was obtained in the condition of 570 oC, 25 Hz and 200 cm3/min, temperature being the parameter of greatest significance. The mass balance of the elementary stages presented in the order of 20% and 37% liquid pyrolytic carbon. We determined the properties of liquid and solid products of pyrolysis as density, viscosity, pH, PCI, and the composition characterized by chemical analysis, revealing the composition and properties of a Bio-oil.
Resumo:
Since the beginning of the National Program for Production and Use of Biodiesel in Brazil, in 2004, different raw materials were evaluated for biodiesel production, trying to combine the agricultural diversity of the country to the desire to reduce production coasts. To determine the chemical composition of biodiesel produced from common vegetables oils, international methods have been used widely in Brazil. However, for analyzing biodiesel samples produced from some alternative raw materials analytical problems have been detected. That was the case of biodiesel from castor oil. Due the need to overcome these problems, new methodologies were developed using different chromatographic columns, standards and quantitative methods. The priority was simplifying the equipment configuration, realizing faster analyses, reducing the costs and facilitating the routine of biodiesel research and production laboratories. For quantifying free glycerin, the ethylene glycol was used in instead of 1,2,4-butanetriol, without loss of quality results. The ethylene glycol is a cheaper and easier standard. For methanol analyses the headspace was not used and the cost of the equipment used was lower. A detailed determination of the esters helped the deeper knowledge of the biodiesel composition. The report of the experiments and conclusions of the research that resulted in the development of alternative methods for quality control of the composition of the biodiesel produced in Brazil, a country with considerable variability of species in agriculture, are the goals of this thesis and are reported in the following pages
Resumo:
Toxoplasmosis is a zoonosis of worldwide distribution caused by the protozoan Toxoplasma gondii, triggering dangerous complications in immunocompromised patients and pregnant women, as well as having great economic impact for the livestock. So far the control of toxoplasmosis is made primarily by chemotherapy. However, most drugs used routinely have some limitations. In order to control this disease, several research groups, including ours, has been working to develop a medical-veterinary vaccine based on parasite antigens, vectors and protocols of immunization. In this study were implemented and standardized methodologies for amplification and cloning of recombinant immunogens in the system for the development of a prototype vaccine, based on the surface antigens of T. gondii and recombinant adenovirus encoding these antigens. Genes encoding BAG1, GRA2 and SAG1 proteins were amplified. We established a strategy for cloning SAG1, SAG2, SAG3 and TgAMA1- genes in recombinant system. The genes encoding SAG1 and SAG2 were cloned and their sequences showed high similarity with sequences from GenBank. The virtual translation of these proteins showed polymorphisms in the amino acid sequence, which can be correlated with levels of antigenicity. Simultaneously, the adenovirus encoding the SAGs (HAdSAGs) were expanded, purificated and characterizated. Immunization of C57bl/6 mice, using viral supernatant was not enought to elicit immune responses at high levels, being required HAdSAGs titration for future immunizations. Therefore, this study allowed the cloning of the two genes important for the development of a prototype vaccine. Besides, implementations methodologies that permit advancements in the development of a vaccine against toxoplasmosis using adenovirus to express proteins of the parasite
Resumo:
The aim of this study was to learn about the social representations of the care provided by the Family Health Program (FHP) in the city of Natal, Brazil and determine how these representations guide the daily actions of doctors, dentists, nurses, nurse s assistants and oral health assistants during the work process. In this sense, we used the theoreticalmethodological approach to the Theory of Social Representations. For data collection, we used the following instruments: a two-part questionnaire, where the first part recorded sociodemographic data and the second part was adapted to the free word association technique (FWAT), which was applied to 90 professionals belonging to 18 FHP units. Interviews were also used as collection instruments. These were based on inductive stimuli and on direct observations of 30 of these professionals. After a superficial reading of the material, we constructed a corpus from which ten categories emerged. To analyze FWAT we used lexicographic analysis, combining frequency and the mean order of responses. The interviews and sociodemographic variables were analyzed using content analysis and descriptive statistical analysis, respectively. The study showed that the central nucleus of the social representation in question is composed of the elements attention, receptivity and love, revealing that the subjects have different understandings of the FHP care process and that the knowledge accumulated in this respect is supported by an approximate vision of the meaning of care. However, traditional elements with trivializing connotations about care predominate, which compromises the development of strategies to overcome traditional practices. In the set of analyses, we were able to capture the invariance of a contradiction: on one hand, professionals know and affirm the importance of providing care for FHP patients; on the other, the experience of daily practice translates into the negation of this concept. In this contradictory context, professionals build gradual and successive syntheses that allow them to act and affirm themselves by associating information from their academic formation, structured knowledge acquired in other experiences, values and symbols of their daily routine. Thus, they shape and reshape themselves, according to what is concretely and specifically required, at the same time both plural and multiple. The composition of the central nucleus indicates that any measure that intends to modify attitudes that is, the daily actions of FHP professionals with respect to care must take into account and give priority to the debate about the redefining of the semantic fields of the central nucleus (love/attention/receptivity and humanization), especially those of love and attention
Resumo:
Alterations in the neuropsychomotor development of children are not rare and can manifest themselves with varying intensity at different stages of their development. In this context, maternal risk factors may contribute to the appearance of these alterations. A number of studies have reported that neuropsychomotor development diagnosis is not an easy task, especially in the basic public health network. Diagnosis requires effective, low-cost, and easy - to-apply procedures. The Denver Developmental Screening Test, first published in 1967, is currently used in several countries. It has been revised and renamed as the Denver II Test and meets the aforementioned criteria. Accordingly, the aim of this study was to apply the Denver II Test in order to verify the prevalence of suspected neuropsychomotor development delay in children between the ages of 0 and 12 months and correlate it with the following maternal risk factors: family income, schooling, age at pregnancy, drug use during pregnancy, gestational age, gestational problems, type of delivery and the desire to have children. For data collection, performed during the first 6 months of 2004, a clinical assessment was made of 398 children selected by pediatricians and the nursing team of each public health unit. Later, the parents or guardians were asked to complete a structured questionnaire to determine possible risk indicators of neuropsychomotor development delay. Finally the Denver II Developmental Screening Test (DDST) was applied. The data were analyzed together, using Statistical Package for Social Science (SPSS) software, version 6.1. The confidence interval was set at 95%. The Denver II Test yielded normal and questionable results. This suggests compromised neuropsychomotor development in the children examined and deserves further investigation. The correlation of the results with preestablished maternal risk variables (family income, mother s schooling, age at pregnancy, drug use during the pregnancy and gestational age) was strongly significant. The other maternal risk variables (gestational problems, type of delivery and desire to have children) were not significant. Using an adjusted logistic regression model, we obtained the estimate of the greater likelihood of a child having suspected neuropsychomotor development delay: a mother with _75 4 years of schooling, chronological age less than 20 years and a drug user during pregnancy. This study produced two manuscripts, one published in Acta Cirúrgica Brasileira , in which an analysis was performed of children with suspected neuropsychomotor development delay in the city of Natal, Brazil. The other paper (to be published) analyzed the magnitude of the independent variable maternal schooling associated to neuropsychomotor development delay, every 3 months during the first twelve months of life of the children selected.. The results of the present study reinforce the multifactorial characteristic of development and the cumulative effect of maternal risk factors, and show the need for a regional policy that promotes low-cost programs for the community, involving children at risk of neuropsychomotor development delay. Moreover, they suggest the need for better qualified health professionals in terms of monitoring child development. This was an inter- and multidisciplinary study with the integrated participation of doctors, nurses, nursing assistants and professionals from other areas, such as statisticians and information technology professionals, who met all the requirements of the Postgraduate Program in Health Sciences of the Federal University of Rio Grande do Norte
Resumo:
Micro and nanoparticulate systems as drug delivery carriers have achieved successful therapeutic use by enhancing efficacy and reducing toxicity of potent drugs. The improvement of pharmaceutical grade polymers has allowed the development of such therapeutic systems. Microencapsulation is a process in which very thin coatings of inert natural or synthetic polymeric materials are deposited around microsized particles of solids or around droplets. Products thus formed are known as microparticles. Xylan is a natural polymer abundantly found in nature. It is the most common hemicellulose, representing more than 60% of the polysaccharides existing in the cell walls of corn cobs, and is normally degraded by the bacterial enzymes present in the colon of the human body. Therefore, this polymer is an eligible material to produce colon-specific drug carriers. The aim of this study was to evaluate the technological potential of xylan for the development of colon delivery systems for the treatment of inflammatory bowel diseases. First, coacervation was evaluated as a feasible method to produce xylan microcapsules. Afterwards, interfacial cross-linking polymerization was studied as a method to produce microcapsules with hydrophilic core. Additionally, magnetic xylan-coated microcapsules were prepared in order to investigate the ability of producing gastroresistant systems. Besides, the influence of the external phase composition on the production and mean diameter of microcapsules produced by interfacial cross-linking polymerization was investigated. Also, technological properties of xylan were determined in order to predict its possible application in other pharmaceutical dosage forms