156 resultados para Modelagem térmica
Resumo:
The development of interactive systems involves several professionals and the integration between them normally uses common artifacts, such as models, that drive the development process. In the model-driven development approach, the interaction model is an artifact that includes the most of the aspects related to what and how the user can do while he/she interacting with the system. Furthermore, the interactive model may be used to identify usability problems at design time. Therefore, the central problematic addressed by this thesis is twofold. In the first place, the interaction modeling, in a perspective that helps the designer to explicit to developer, who will implement the interface, the aspcts related to the interaction process. In the second place, the anticipated identification of usability problems, that aims to reduce the application final costs. To achieve these goals, this work presents (i) the ALaDIM language, that aims to help the designer on the conception, representation and validation of his interactive message models; (ii) the ALaDIM editor, which was built using the EMF (Eclipse Modeling Framework) and its standardized technologies by OMG (Object Management Group); and (iii) the ALaDIM inspection method, which allows the anticipated identification of usability problems using ALaDIM models. ALaDIM language and editor were respectively specified and implemented using the OMG standards and they can be used in MDA (Model Driven Architecture) activities. Beyond that, we evaluated both ALaDIM language and editor using a CDN (Cognitive Dimensions of Notations) analysis. Finally, this work reports an experiment that validated the ALaDIM inspection method
Resumo:
The software development processes proposed by the most recent approaches in Software Engineering make use old models. UML was proposed as the standard language for modeling. The user interface is an important part of the software and has a fundamental importance to improve its usability. Unfortunately the standard UML does not offer appropriate resources to model user interfaces. Some proposals have already been proposed to solve this problem: some authors have been using models in the development of interfaces (Model Based Development) and some proposals to extend UML have been elaborated. But none of them considers the theoretical perspective presented by the semiotic engineering, that considers that, through the system, the designer should be able to communicate to the user what he can do, and how to use the system itself. This work presents Visual IMML, an UML Profile that emphasizes the aspects of the semiotic engineering. This Profile is based on IMML, that is a declarative textual language. The Visual IMML is a proposal that aims to improve the specification process by using a visual modeling (using diagrams) language. It proposes a new set of modeling elements (stereotypes) specifically designed to the specification and documentation of user interfaces, considering the aspects of communication, interaction and functionality in an integrated manner
Resumo:
Typically Web services contain only syntactic information that describes their interfaces. Due to the lack of semantic descriptions of the Web services, service composition becomes a difficult task. To solve this problem, Web services can exploit the use of ontologies for the semantic definition of service s interface, thus facilitating the automation of discovering, publication, mediation, invocation, and composition of services. However, ontology languages, such as OWL-S, have constructs that are not easy to understand, even for Web developers, and the existing tools that support their use contains many details that make them difficult to manipulate. This paper presents a MDD tool called AutoWebS (Automatic Generation of Semantic Web Services) to develop OWL-S semantic Web services. AutoWebS uses an approach based on UML profiles and model transformations for automatic generation of Web services and their semantic description. AutoWebS offers an environment that provides many features required to model, implement, compile, and deploy semantic Web services
Resumo:
The field of Wireless Sensor and Actuator Networks (WSAN) is fast increasing and has attracted the interest of both the research community and the industry because of several factors, such as the applicability of such networks in different application domains (aviation, civil engineering, medicine, and others). Moreover, advances in wireless communication and the reduction of hardware components size also contributed for a fast spread of these networks. However, there are still several challenges and open issues that need to be tackled in order to achieve the full potential of WSAN usage. The development of WSAN systems is one of the most relevant of these challenges considering the number of variables involved in this process. Currently, a broad range of WSAN platforms and low level programming languages are available to build WSAN systems. Thus, developers need to deal with details of different sensor platforms and low-level programming abstractions of sensor operational systems on one hand, and they also need to have specific (high level) knowledge about the distinct application domains, on the other hand. Therefore, in order to decouple the handling of these two different levels of knowledge, making easier the development process of WSAN systems, we propose LWiSSy (Domain Language for Wireless Sensor and Actuator Networks Systems), a domain specific language (DSL) for WSAN. The use of DSLs raises the abstraction level during the programming of systems and modularizes the system building in several steps. Thus, LWiSSy allows the domain experts to directly contribute in the development of WSANs without having knowledge on low level sensor platforms, and network experts to program sensor nodes to meet application requirements without having specific knowledge on the application domain. Additionally, LWiSSy enables the system decomposition in different levels of abstraction according to structural and behavioral features and granularities (network, node group and single node level programming)
Resumo:
The Reconfigurables Architectures had appeares as an alternative to the ASICs and the GGP, keeping a balance between flexibility and performance. This work presents a proposal for the modeling of Reconfigurables with Chu Spaces, describing the subjects main about this thematic. The solution proposal consists of a modeling that uses a generalization of the Chu Spaces, called of Chu nets, to model the configurations of a Reconfigurables Architectures. To validate the models, three algorithms had been developed and implemented to compose configurable logic blocks, detection of controllability and observability in applications for Reconfigurables Architectures modeled by Chu nets
Resumo:
In this beginning of the XXI century, the Geology moves for new ways that demand a capacity to work with different information and new tools. It is within this context that the analog characterization has important in the prediction and understanding the lateral changes in the geometry and facies distribution. In the present work was developed a methodology for integration the geological and geophysical data in transitional recent deposits, the modeling of petroliferous reservoirs, the volume calculation and the uncertainties associate with this volume. For this purpose it was carried planialtimetric and geophysics (Ground Penetrating Radar) surveys in three areas of the Parnaíba River. With this information, it was possible to visualize the overlap of different estuary channels and make the delimitation of the channel geometry (width and thickness). For three-dimensional visualization and modeling were used two of the main reservoirs modeling software. These studies were performed with the collected parameters and the data of two reservoirs. The first was created with the Potiguar Basin wells data existents in the literature and corresponding to Açu IV unit. In the second case was used a real database of the Northern Sea. In the procedures of reservoirs modeling different workflows were created and generated five study cases with their volume calculation. Afterwards an analysis was realized to quantify the uncertainties in the geological modeling and their influence in the volume. This analysis was oriented to test the generating see and the analogous data use in the model construction
Resumo:
This thesis presents the results of application of SWAN Simulating WAves Nearshore numerical model, OF third generation, which simulates the propagation and dissipation of energy from sea waves, on the north continental shelf at Rio Grande do Norte, to determine the wave climate, calibrate and validate the model, and assess their potential and limitations for the region of interest. After validation of the wave climate, the results were integrated with information from the submarine relief, and plant morphology of beaches and barrier islands systems. On the second phase, the objective was to analyze the evolution of the wave and its interaction with the shallow seabed, from three transverse profiles orientation from N to S, distributed according to the parallel longitudinal, X = 774000-W, 783000-W e 800000-W. Subsequently, it was were extracted the values of directional waves and winds through all the months between november 2010 to november 2012, to analyze the impact of these forces on the movement area, and then understand the behavior of the morphological variations according to temporal year variability. Based on the results of modeling and its integration with correlated data, and planimetric variations of Soledade and Minhoto beach systems and Ponta do Tubarão and Barra do Fernandes barrier islands systems, it was obtained the following conclusions: SWAN could reproduce and determine the wave climate on the north continental shelf at RN, the results show a similar trend for the measurements of temporal variations of significant height (HS, m) and the mean wave period (Tmed, s); however, the results of parametric statistics were low for the estimates of the maximum values in most of the analyzed periods compared data of PT 1 and PT 2 (measurement points), with alternation of significant wave heights, at times overrated with occasional overlap of swell episodes. By analyzing the spatial distribution of the wave climate and its interaction with the underwater compartmentalization, it was concluded that there is interaction of wave propagation with the seafloor, showing change in significant heights whenever it interacts with the seafloor features (beachrocks, symmetric and asymmetric longitudinal dunes, paleochannel, among others) in the regions of outer, middle and inner shelf. And finally, it is concluded that the study of the stability areas allows identifications of the most unstable regions, confirming that the greatest range of variation indicates greater instability and consequent sensitivity to hydrodynamic processes operating in the coastal region, with positive or negative variation, especially at Ponta do Tubarão and Barra do Fernandes barrier islands systems, where they are more susceptible to waves impacts, as evidenced in retreat of the shoreline
Resumo:
We report a theoretical investigation of thermal hysteresis in magnetic nanoelements. Thermal hysteresis originates in the existence of meta-stable states in temperature intervals which may be tuned by small values of the external magnetic field, and are controlled by the systems geometric dimensions as well as the composition. Two systems have been investigated. The first system is a trilayer consisting of one antiferromagnetic MnF2 film, exchange coupled with two Fe lms. At low temperatures the ferromagnetic layers are oriented in opposite directions. By heating in the presence of an external magnetic field, the Zeeman energy induces a gradual orientation of the ferromagnets with the external field and the nucleation of spin- op-like states in the antiferromagnetic layer, leading eventually, in temperatures close to the Neel temperature, to full alignment of the ferromagnetic films and the formation of frustrated exchange bonds in the center of the antiferromagnetic layer. By cooling down to low temperatures, the system follows a different sequence of states, due to the anisotropy barriers of both materials. The width of the thermal hysteresis loop depends on the thicknesses of the FM and AFM layers as well as on the strength of the external field. The second system consists in Fe and Permalloy ferromagnetic nanoelements exchange coupled to a NiO uncompensated substrate. In this case the thermal hysteresis originates in the modifications of the intrinsic magnetic
Resumo:
Os Algoritmos Genético (AG) e o Simulated Annealing (SA) são algoritmos construídos para encontrar máximo ou mínimo de uma função que representa alguma característica do processo que está sendo modelado. Esses algoritmos possuem mecanismos que os fazem escapar de ótimos locais, entretanto, a evolução desses algoritmos no tempo se dá de forma completamente diferente. O SA no seu processo de busca trabalha com apenas um ponto, gerando a partir deste sempre um nova solução que é testada e que pode ser aceita ou não, já o AG trabalha com um conjunto de pontos, chamado população, da qual gera outra população que sempre é aceita. Em comum com esses dois algoritmos temos que a forma como o próximo ponto ou a próxima população é gerada obedece propriedades estocásticas. Nesse trabalho mostramos que a teoria matemática que descreve a evolução destes algoritmos é a teoria das cadeias de Markov. O AG é descrito por uma cadeia de Markov homogênea enquanto que o SA é descrito por uma cadeia de Markov não-homogênea, por fim serão feitos alguns exemplos computacionais comparando o desempenho desses dois algoritmos
Resumo:
In this work we present a mathematical and computational modeling of electrokinetic phenomena in electrically charged porous medium. We consider the porous medium composed of three different scales (nanoscopic, microscopic and macroscopic). On the microscopic scale the domain is composed by a porous matrix and a solid phase. The pores are filled with an aqueous phase consisting of ionic solutes fully diluted, and the solid matrix consists of electrically charged particles. Initially we present the mathematical model that governs the electrical double layer in order to quantify the electric potential, electric charge density, ion adsorption and chemical adsorption in nanoscopic scale. Then, we derive the microscopic model, where the adsorption of ions due to the electric double layer and the reactions of protonation/ deprotanaç~ao and zeta potential obtained in modeling nanoscopic arise in microscopic scale through interface conditions in the problem of Stokes and Nerst-Planck equations respectively governing the movement of the aqueous solution and transport of ions. We developed the process of upscaling the problem nano/microscopic using the homogenization technique of periodic structures by deducing the macroscopic model with their respectives cell problems for effective parameters of the macroscopic equations. Considering a clayey porous medium consisting of kaolinite clay plates distributed parallel, we rewrite the macroscopic model in a one-dimensional version. Finally, using a sequential algorithm, we discretize the macroscopic model via the finite element method, along with the interactive method of Picard for the nonlinear terms. Numerical simulations on transient regime with variable pH in one-dimensional case are obtained, aiming computational modeling of the electroremediation process of clay soils contaminated
Resumo:
This dissertation focuses on rock thermal conductivity and its correlations with petrographic, textural, and geochemical aspects, especially in granite rocks. It aims at demonstrating the relations of these variables in an attempt to enlighten the behavior of thermal effect on rocks. Results can be useful for several applications, such as understanding and conferring regional thermal flow results, predicting the behavior of thermal effect on rocks based upon macroscopic evaluation (texture and mineralogy), in the building construction field in order to provide more precise information on data refinement on thermal properties emphasizing a rocky material thermal conductivity, and especially in the dimension stone industry in order to open a discussion on the use of these variables as a new technological parameter directly related to thermal comfort. Thermal conductivity data were obtained by using Anter Corporation s QuicklineTM -30 a thermal property measuring equipment. Measurements were conducted at temperatures ranging between 25 to 38 OC in samples with 2cm in length and an area of at least 6cm of diameter. As to petrography data, results demonstrated good correlations with quartz and mafics. Linear correlation between mineralogy and thermal conductivity revealed a positive relation of a quartz percentage increase in relation to a thermal conductivity increase and its decrease with mafic minerals increase. As to feldspates (K-feldspate and plagioclase) they show dispersion. Quartz relation gets more evident when compared to sample sets with >20% and <20%. Sets with more than 20% quartz (sienogranites, monzogranites, granodiorites, etc.), exhibit to a great extent conductivity values which vary from 2,5 W/mK and the set with less than 20% (sienites, monzonites, gabbros, diorites, etc.) have an average thermal conductivity below 2,5 W/mK. As to textures it has been verified that rocks considered thick/porphyry demonstrated in general better correlations when compared to rocks considered thin/medium. In the case of quartz, thick rocks/porphyry showed greater correlation factors when compared to the thin/medium ones. As to feldspates (K-feldspate and plagioclase) again there was dispersion. As to mafics, both thick/porphyry and thin/medium showed negative correlations with correlation factor smaller than those obtained in relation to the quartz. As to rocks related to the Streckeisen s QAP diagram (1976), they tend to fall from alcali-feldspates granites to tonalites, and from sienites to gabbros, diorites, etc. Thermal conductivity data correlation with geochemistry confirmed to a great extent mineralogy results. It has been seen that correlation is linear if there is any. Such behavior could be seen especially with the SiO2. In this case similar correlation can be observed with the quartz, that is, thermal conductivity increases as SiO2 is incremented. Another aspect observed is that basic to intermediate rocks presented values always below 2,5 W/mK, a similar behavior to that observed in rocks with quartz <20%. Acid rocks presented values above 2,5 W/mK, a similar behavior to that observed in rocks with quartz >20% (granites). For all the other cases, correlation factors are always low and present opposite behavior to Fe2O3, CaO, MgO, and TiO2. As to Al2O3, K2O, and Na2O results are not conclusive and are statistically disperse. Thermal property knowledge especially thermal conductivity and its application in the building construction field appeared to be very satisfactory for it involves both technological and thermal comfort aspects, which favored in all cases fast, cheap, and precise results. The relation between thermal conductivity and linear thermal dilatation have also shown satisfactory results especially when it comes to the quartz role as a common, determining phase between the two variables. Thermal conductivity studies together with rocky material density can function as an additional tool for choosing materials when considering structural calculation aspects and thermal comfort, for in the dimension stone case there is a small density variation in relation to a thermal conductivity considerable variation
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
This work shows a integrated study of modern analog to fluvial reservoirs of Açu Formation (Unit 3). The modern analog studied has been Assu River located in the same named city, Rio Grande do Norte State, Northeast of Brazil. It has been developed a new methodology to parameterizating the fluvial geological bodies by GPR profile (by central frequency antennas of 50, 100 and 200 MHz). The main parameters obtained were width and thickness. Still in the parameterization, orthophotomaps have been used to calculate the canal sinuosity and braided parameters of Assu River. These information are integrated in a database to supply input data in 3D geological models of fluvial reservoirs. It was made an architectural characterization of the deposit by trench description, GPR profile interpretation and natural expositions study to recognize and describe the facies and its associations, external and internal geometries, boundary surfaces and archtetural elements. Finally, a three-dimensional modeling has been built using all the acquired data already in association with real well data of a reservoir which Rio Assu is considered as analogous. Facies simulations have been used simple kriging (deterministic algorithm), SIS and Boolean (object-based, both stochastics). And, for modeling porosities have used the stochastic algorithm SGS
Resumo:
This study presents the Environmental Sensibility Mapping to oil spillings on the Potengi estuary - RN and neighboring coastline through remote sensing data, collecting, treatment and integration of the geomorphologic, oceanographic (temperature, salinity, density, direction and intensity), meteorological (wind speed and direction) and high resolution seismic (bathymetry and sonography) data. The Potengi river estuary is located on the eastern coastline of the Rio Grande do Norte State, being inserted in the geological context for the coastal Pernambuco-Paraíba basin and spreading over 18 km; it shelters the Natal harbor zone and an oil terminal, centralizing, therefore, important oil transport operations that can cause accidental spillings. Under the oceanographic point of view, the Potengi estuary is characterized by the absence of any expressive thermic stratification, being classified as partially mixed, B type according to Pritchard (1955), and 2 type in conformity to the stratification-circulation diagram by Hansen & Rattray (1966). Two main wind systems are responsable for the formation of wave sets that occur in the area. The dynamic tide presents, in the Natal Harbor, mean amplitude in spring and quadrature tides, with around 2.8 and 2m, respectively. The mechanism of saline tide mixing was defined through the salinity which is the main parameter for the identification of this mechanism. Important variations of the salinity mean values (36.32 psu), temperature (28.11ºC) and density (22.96 kg/m3) in the estuarine waters presented features belonging to low latitude regions. The water temperature follows the air temperature variations, in the region, with expressive daily amplitudes. In this study, the identification of the estuarine bed morphology through bathymetric and sonographic analysis, had the purpose to evaluate the influence of the superficial and bottom currents for the bottom shaping. In this way, the use of the side scan sonar showed, to be very useful in the identification of the bottom morphology and its relationship with the predominant action of the tidal currents in the Potengi estuary. Besides, it showed how the sonograms can be a support to the comparison of the several patterns derived from the local hydrodynamic variations. The holocene sediments, which fill the estuarine channel, are predominantly sandy, varying from selected, sometimes silty. The sedimentation is controlled by the environmental hydrodynamic conditions, being recognized two important textural facies: Muddy Facies and Sandy Facies. The distribution of these textural facies apparently oscillates owing to the tidal cycle and flow intensity. Each one of the above mentioned data was integrated in a Geographic Information System (GIS), from which was produced the Environmental Sensibility Map to oil spillings with Coastal Sensibility Index (CSI) to the Potengi estuary. The integrated analysis of these data is essential to oil spilling contingency plans, in order to reduce the spilling environmental consequences and to make efficient the endeavours of contention and cleaning up/removal on the Natal Harbor. This study has the aim to collaborate for the increase of informations about the estuarine environment and contribute to a better management of the question: environment/polluting loads
Resumo:
The area between Galinhos and São Bento do Norte beaches, located in the northern coast of the Rio Grande do Norte State is submitted to intense and constant processes of littoral and aeolian transport, causing erosion, alterations in the sediments balance and modifications in the shoreline. Beyond these natural factors, the human interference is huge in the surroundings due to the Guamaré Petroliferous Pole nearby, the greater terrestrial oil producing in Brazil. Before all these characteristics had been organized MAMBMARE and MARPETRO projects with the main objective to execute the geo-environmental monitoring of coastal areas on the northern portion of RN. There is a bulky amount of database from the study area such as geologic and geophysical multitemporal data, hydrodynamic measurements, remote sensing multitemporal images, thematic maps, among others; it is of extreme importance to elaborate a Geographic Database (GD), one of the main components of a Geographic Information System (GIS), to store this amount of information, allowing the access to researchers and users. The first part of this work consisted to elaborate a GD to store the data of the area between Galinhos and São Bento do Norte cities. The main goal was to use the potentiality of the GIS as a tool to support decisions in the environmental monitoring of this region, a valuable target for oil exploration, salt companies and shrimp farms. The collected data was stored as a virtual library to assist men decisions from the results presented as digital thematic maps, tables and reports, useful as source of data in the preventive planning and as guidelines to the future research themes both on regional and local context. The second stage of this work consisted on elaborate the Oil-Spill Environmental Sensitivity Maps. These maps based on the Environmental Sensitivity Index Maps to Oil Spill developed by the Ministry of Environment are cartographic products that supply full information to the decision making, contingency planning and assessment in case of an oil spilling incident in any area. They represent the sensitivity of the areas related to oil spilling, through basic data such as geology, geomorphology, oceanographic, social-economic and biology. Some parameters, as hydrodynamic data, sampling data, coastal type, declivity of the beach face, types of resources in risk (biologic, economic, human or cultural) and the land use of the area are some of the essential information used on the environmental sensitivity maps elaboration. Thus using the available data were possible to develop sensitivity maps of the study area on different dates (June/2000 and December/2000) and to perceive that there was a difference on the sensitivity index generated. The area on December presented more sensible to the oil than the June one because hydrodynamic data (wave and tide energy) allowed a faster natural cleaning on June. The use of the GIS on sensitivity maps showed to be a powerful tool, since it was possible to manipulate geographic data with correctness and to elaborate more accurate maps with a higher level of detail to the study area. This presented an medium index (3 to 4) to the long shore and a high index (10) to the mangrove areas highly vulnerable to oil spill