118 resultados para Líquidos - Propriedades físicas - Monitorização


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The demand for environmental comfort in construction systems within the insulation and thermal comfort, plus the advent of new laws regulating the minimum requirements of comfort, disposal of solid industrial waste, construction waste, the requirements of consumers by adopting construction methods "cleaner", encouraged the development of this work. Aims technologically characterize the composite proposed in three types of samples (10%, 30% and 50% of thermoset plastic industrial waste) and raw materials: gypsum waste, cement and plastic thermosetting industrial waste in order to produce the composite with properties of thermal insulation: conductivity, thermal diffusivity, specific heat and resistivity. The physical, structural and morphological properties of the raw materials were investigated by thermogravimetry analysis (TG / DSC), X-ray diffraction (DRX), X-ray fluorescence (FXR) and scanning electron microscopy (MEV). Obtaining mechanical properties through the compression strength test. The analysis results indicate characteristics suitable for cement matrix composite production with the addition of thermosetting plastic industrial waste and gypsum waste, with potential application of these materials in composites with properties of thermal insulation. Finally, assessing what proportion showed up with better performance. Considering the analysis and testing carried out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The demand for environmental comfort in construction systems within the insulation and thermal comfort, plus the advent of new laws regulating the minimum requirements of comfort, disposal of solid industrial waste, construction waste, the requirements of consumers by adopting construction methods "cleaner", encouraged the development of this work. Aims technologically characterize the composite proposed in three types of samples (10%, 30% and 50% of thermoset plastic industrial waste) and raw materials: gypsum waste, cement and plastic thermosetting industrial waste in order to produce the composite with properties of thermal insulation: conductivity, thermal diffusivity, specific heat and resistivity. The physical, structural and morphological properties of the raw materials were investigated by thermogravimetry analysis (TG / DSC), X-ray diffraction (DRX), X-ray fluorescence (FXR) and scanning electron microscopy (MEV). Obtaining mechanical properties through the compression strength test. The analysis results indicate characteristics suitable for cement matrix composite production with the addition of thermosetting plastic industrial waste and gypsum waste, with potential application of these materials in composites with properties of thermal insulation. Finally, assessing what proportion showed up with better performance. Considering the analysis and testing carried out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FORMIGA, Felipe Lira et al. Avaliação da Potencialidade de Uso do Resíduo Proveniente da Indústria de Beneficiamento do Caulim na Produção de Piso Cerâmico. Cerâmica Industrial, v. 14, p. 41-45, 2009.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cells unitaria of the solid oxide fuel cell are separated by means of interconnects, which serve as electrical contact between the cells. Lanthanum Chromite (LaCrO3) has been the most common material used as interconnect in solid oxide fuel cells. Reducing the operating temperature around 800 º C of cells to solid oxide fuel make possibilite the use of metallic interconnects as an alternative to ceramic LaCrO3. Metallic interconnects have advantages over ceramic interconnects such as high thermal conductivity, electricity, good ductility, low cost, good physical and mechanical properties. In this work evaluate the thermo-mechanical properties of the metallic substrate and coated metallic substrate with the ceramic LaCrO3 film via spray-pyrolysis, in order to demonstrate the feasibility of using this material as a component of a fuel cell solid oxide. The materials were characterized by X-ray diffraction, oxidation behavior, mechanical strength, optical microscopy (OM) and scanning electron microscopy (SEM). The X-ray diffraction proved the formation phase of the LaCrO3 on the metallic substrate and the identification of the phases formed after the oxidative test and mechanical strength at high temperature. The oxidation behavior showed the increased oxidation resistance of the coated metallic substrate. It was noted that the mechanical resistance to bending of the coated metallic substrate only increases at room temperature. The optical microscopy (OM) has provided an assessment of both the metallic substrate and the LaCrO3 film deposited on the metal substrate that, in comparison with the micrographs obtained from SEM. The SEM one proved the formation of Cr2O3 layer on the metallic substrate and stability of LaCrO3 film after oxidative test, it can also observe the displacement of the ceramic LaCrO3 film after of mechanical testing and mapping of the main elements as chromium, manganese, oxygen, lanthanum in samples after the thermo-mechanical tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the major current challenges for oilwell companies is the extraction of oil from evaporitic zones, also known as pre-salt basins. Deep reservoirs are found under thick salt layers formed from the evaporation of sea water. Salt layers seal the flow of oil from underneath rock formations, which store hydrocarbons and increase the probability of success in oil and gas exploration. Oilwells are cemented using Portland-based slurries to promote mechanical stability and zonal isolation. For pre-salt oilwells, NaCl must be added to saturate the cement slurries, however, the presence of salt in the composition of slurries affects their overall behavior. Therefore, the objective of the present study was to evaluate the effect of the addition of 5 to 25% NaCl on selected properties of Portland-based slurries. A series of tests were carried out to assess the rheological behavior, thickening time, free water and ultrassonic compressive strength. In addition, the slurries were also characterized by thermal analysis, X ray diffraction and scanning electron microscopy. The results showed that the addition of NaCl affected the thickening time of the slurries. NaCl contents up to 10% shortened the thickening time of the slurries. On the other hand, concentrations in excess of 20% not only extended the thickening time, but also reduced the strength of hardened slurries. The addition of NaCl resulted in the formation of a different crystalline phase called Friedel´s salt, where free chlorine is bonded to tricalcium aluminate

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It seeks to find an alternative to the current tantalum electrolytic capacitors in the market due to its high cost. Niobium is a potential substitute, since both belong to the same group of the periodic table and because of this have many similar physical and chemical properties. Niobium has several technologically important applications, and Brazil has the largest reserves, around 96%. There are including niobium in reserves of tantalite and columbite in Rio Grande do Norte. These electrolytic capacitors have high capacitance specifies, ie they can store high energy in small volumes compared to other types of capacitors. This is the main attraction of this type of capacitor because is growing demand in the production of capacitors with capacitance specifies increasingly high, this because of the miniaturization of various devices such as GPS devices, televisions, computers, phones and many others. The production route of the capacitor was made by powder metallurgy. The initial niobium powder supplied by EEL-USP was first characterized by XRD, SEM, XRF and laser particle size, to then be sieved into three particle size, 200, 400 e 635mesh. The powders were then compacted and sintered at 1350, 1450 and 1550°C using two sintering time 30 and 60min. Sintering is one of the most important parts of the process as it affects properties as porosity and surface cleaning of the samples, which greatly affected the quality of the capacitor. The sintered samples then underwent a process of anodic oxidation, which created a thin film of niobium pentóxido over the whole porous surface of the sample, this film is the dielectric capacitor. The oxidation process variables influence the performance of the film and therefore the capacitor. The samples were characterized by electrical measurements of capacitance, loss factor, ESR, relative density, porosity and surface area. After the characterizations was made an annealing in air ate 260ºC for 60min. After this treatment were made again the electrical measurements. The particle size of powders and sintering affected the porosity and in turn the specific area of the samples. The larger de area of the capacitor, greater is the capacitance. The powder showed the highest capacitance was with the smallest particle size. Higher temperatures and times of sintering caused samples with smaller surface area, but on the other hand the cleaning surface impurities was higher for this cases. So a balance must be made between the gain that is achieved with the cleaning of impurities and the loss with the decreased in specific area. The best results were obtained for the temperature of 1450ºC/60min. The influence of annealing on the loss factor and ESR did not follow a well-defined pattern, because their values increased in some cases and decreased in others. The most interesting results due to heat treatment were with respect to capacitance, which showed an increase for all samples after treatment

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In building, during the implementation process of major or even minor works, there is a considerable waste of plaster in the steps of coating, making it is a negative factor because of the loss of these processes constructive remains incorporated into buildings, as component, whose final dimensions are higher than those projected. Another negative factor is the disposal of waste gypsum in inappropriate places, thus contributing to the degradation of environmental quality, due to the leaching of this waste and may trigger the formation of sulfuric acid. Therefore, based on this picture, processing and reuse of waste coating, combined with the ceramics industry, which is a strong potential in the reuse of certain types of waste, promote mutual benefits. Thus the overall objective of this work is to conduct a search with scientific and technological aspects, to determine the effect of the incorporation of the residue of plaster for coating, from the building, the formulation of bodies for red ceramic. The residue of plaster coating was collected and characterized. They were also selected raw materials of two ceramic poles of the state of Rio Grande do Norte and formulations have been made with the intention of obtaining those with the best physical and mechanical properties, the residue was added the percentage of 5%, 10%, 15%, 20%, 25% and 30%, in the best formulation of ceramic industry 1 and, according the properties analyses, 5%, 10% and 15% as the best results of ceramic industry 2. The samples were sintered at temperatures of 850 ºC, 950 °C and 1050 °C, the heating rate of 5 ºC / min with isotherm of two hours. They were submitted to testing technology, such as lineal shrinkage, water absorption, apparent porosity, apparent density and bending resistence. The residue incorporation best results in the formulations of mass in red ceramic, were observed between the temperatures of 850 ºC and 950 ºC, in those formulations that have illite clays and medium plastic in their composition, in the range of 0% to 15% residue incorporated

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxide type spinel AB2O4 presents structure adjusted for application in the automobile industry. The spinel of cobalt has many practical applications had its excellent physical and chemical properties such as catalyst in hydrocarbon oxidation reaction. The CeO2 has been used in many of these processes because it assigns to a material with excellent thermal resistance and mechanics, high capacity of oxygen stockage (OSC) among others properties. This work deals with the synthesis, characterization and catalytic application of spinel of cobalt and CeO2 with fluorita structure, obtained for method of Pechini and method of Gel-Combustion. The process of Pechini, the puff was obtained at 300 ºC for 2 h in air. In the process of Gel-Combustion the approximately at 350 ºC material was prepared and burnt for Pyrolysis, both had been calcined at 500 ºC, 700 ºC, 900 ºC and 1050 ºC for 2 h in air. The materials of the calcinations had been characterized by TG/DTA, electronic microscopy of sweepings (MEV), spectroscopy of absorption in the infra-red ray (FTIR) and diffraction of X-rays (DRX). The obtained material reaches the phase oxide at 450 oC for Pechini method and 500 °C for combustion method. The samples were submitted catalytic reaction of n-hexane on superficies of materials. The reactor function in molar ration of 0, 85 mol.h-1.g-1 and temperature of system was 450 °C. The sample obtained for Pechini and support in alumine of superficial area of 178,63 m2.g-1 calcined at 700 ºC, give results of catalytic conversions of 39 % and the sample obtained for method of gel-combustion and support in alumina of 150 mesh calcined at 500 ºC result 13 % of conversion. Both method were selective specie C1

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work main objective is to study the use of bricks in barium X-rays rooms in order to contribute to the optimization of shielding rooms diagnosis. The work was based on experimental measurements of X-ray attenuation (40 to 150 kV), using ceramic seal bearing the incorporation of barium sulfat (BaSO4). Different formulations were studied in three different firing temperatures and evaluated for incorporation in the ceramic body. The composition of 20% of barite processed at a temperature of 950 ° C showed better physical and mechanical properties, is considered the most suitable for the purpose of this work. Were produced bricks sealing composition formulated based on that presented the best technological features. These blocks were tested physically as a building material and wall protective barrier. Properties such as visual, deviation from the square, face flatness, water absorption and compressive strength were evaluated for all the blocks produced. The behavior of this material as attenuator for X-rays was investigated by experimental results which take into account mortar manufacturers barium through the different strains and compared with the reference material (Pb). The simulation results indicated that the ceramic block barium shows excellent properties of attenuation equivalence lead taking into account the energy used in diagnostic X-ray

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mining industry is responsible for the generation of waste from their natural process of extraction. The mining impacts in urban areas are of special importance due to the high urban occupation, which are exacerbated due to the proximity of the mined areas and populated areas. Some solutions to wastedisposal have the potential to significantly reduce the environmental risks and liabilities, but represent higher costs in the stages of deployment and operation. The addition of mining waste as raw material in the development of commercial products reduces the environmental impacts, transforming the waste into a positive element in the generation of employment and income. This thesis studies the incorporation of waste iron ore in two clays, one from the ceramic industry of the City of Natal and the other from the ceramic industry of the Seridó Region, both in the State of Rio Grande do Norte, Brazil. Percentages of iron ore waste of 5%, 10% , 15%, 20%, 25% and 30% were used in the tested ceramic matrix. The two clays and the iron ore waste used as part of this investigation were characterized by X-ray diffraction tests, X-ray fluorescence tests, differential thermal analysis, thermogravimetric analysis and dilatometric analysis. The samples were sintered under temperatures of 850 °C, 950 °C and 1050°C at a heating rate of 5 °C/min with isotherms of two hours. The following tests were performed with the samples: linear shrinkage, water absorption, apparent porosity, apparent density, mass loss in fire and bending resistance in order to obtain their physical and mechanical properties. An amount of 5% of waste iron ore in the matrix clay at a temperature of 850 0C resulted in na increase of about 65% in the tensile strength of the clay samples from the Natal ceramic industry. A linear shrinkage of only 0.12% was observed for the samples, which indicates that the physical properties of the final product were not influenced by the addition of the waste

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of binders in the soil for the production of solid bricks is an old construction technique that has been used by several civilizations over time. At the same time, the need for environmental preservation and the tendency of scarcity of natural resources make the construction invest in researching new concepts, methods and materials for building systems for the sustainability of their economic activities. Thus arises the need to obtain building materials with low power consumption, capable of reducing the growing housing shortage of rural and urban population. Currently, research has been conducted on this topic to better understand the cementitious and pozzolanic reactions that occur in the formation of the microstructure of the soil-cement when added to other materials such as, for example, lime, and the relationship between microstructure and formed interfaces with the physical, mechanical and chemical analysis in compounds made from these ternary compositions. In this context, this study aimed to analyze the results of the influence of the incorporation of lime to the soil-cement to form a ternary mixture to produce soil-cement bricks and mortar without structural purposes. From the inclusion of contents of 6 %, 8 %, 10% and 12% lime to the soil, and soil-cement mixes in amounts of 2 %, 3 %, 4 % and 5 % were shaped-bodies of -cylindrical specimens to determine the optimum moisture content and maximum dry apparent specific weight. Then they were cured, and subjected to the tests of compressive strength, absorption and durability modified. Compositions obtained the best results in the tests performed on the bodies-of-proof cylindrical served as a parameter for molding of solid bricks, which underwent the same experimental methodology previously cited. The raw materials used, as well as compositions in which the bricks were molded solid, were characterized by physical and chemical tests, X-ray diffraction and scanning electron microscopy. The results obtained in the study indicate that the compositions studied, that showed the best results in terms of compressive strength, water absorption and durability ternary composition was soil, 10 % cement and 2 % lime

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mammography is a diagnostic imaging method in which interpretation depends on knowledge of radiological aspects as well as the clinical exam and pathophysiology of breast diseases. In this work a mammography phantom was developed to be used for training in the operation of mammographic x-ray equipment, image quality evaluation, self-examination and clinical examination of palpation. Polyurethane was used for the production of the phantoms for its physical and chemical properties and because it is one of the components normally used in prostheses. According to the range of flexibility of the polyurethane, it was possible to simulate breasts with higher or lower amount of adipose tissue. Pathologies such as areolar necrosis and tissue rejection due to surgery reconstruction after partial mastectomy were also simulated. Calcifications and nodules were simulated using the following materials: polyethylene, poly (methyl methacrylate), polyamide, polyurethane and poly (dimethyl silicone). Among these, polyethylene was able to simulate characteristics of calcification as well as breast nodules. The results from mammographic techniques used in this paper for the evaluation of the phantoms are in agreement with data found in the literature. The image analyses of four phantoms indicated significant similarities with the human skin texture and the female breast parenchyma. It was possible to detect in the radiographic images produced regions of high and low radiographic optical density, which are characteristic of breasts with regions of different amount of adipose tissue. The stiffnesses of breast phantoms were adjusted according to the formulation of the polyurethane which enabled the production of phantoms with distinct radiographic features and texture similar to human female breast parenchyma. Clinical palpation exam of the phantoms developed in this work indicated characteristics similar to human breast in skin texture, areolar region and parenchyma

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The metalceramic crowns are usually used in dentistry because they provide a resistant structure due to its metallic base and its aesthetics from the porcelain that recovers this structure. To manufacture these crowns, a series of stages should be accomplished in the prosthetic laboratories, and many variables can influence its success. Changes in these variables cause alterations in the metallic alloy and in the porcelain, so, as consequence, in the adhesion between them. The composition of the metal alloy can be modified by recasting alloys, a common practice in some prosthetic laboratories. The aim of this paper is to make a systematic study investigating metalceramic crowns as well as analyzing the effect of recasting Ni-Cr alloys. Another variable which can influence the mechanism of metalceramic union is the temperature used in firing porcelain procedure. Each porcelain has to be fired in a fixed temperature which is determined by the manufacturer and its change can cause serious damages. This research simulate situations that may occur on laboratory procedures and observe their consequences in the quality of the metalceramic union. A scanning eletron microscopy and an optic microscopy were accomplish to analyse the metal-ceramic interface. No differences have been found when remelting alloys were used. The microhardness were similar in Ni-Cr alloys casted once, twice and three times. A wettability test was accomplished using a software developed at the Laboratório de Processamento de Materiais por Plasma, on the Universidade Federal do Rio Grande do Norte. No differences were found in the contact angle between the solid surface (metallic substratum) and the tangencial plane to the liquid surface (opaque). To analyse if the temperature of porcelain firing procedure could influence the contact area between metal and porcelain, a variation in its final temperature was achieve from 980° to 955°C. Once more, no differences have been found

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To produce porcelain tiles fluxing agents are used in order to obtain a liquid phase during firing. This liquid phase fills the pores decreasing porosity, water absorption and contributes to material densification. In the porcelain tiles industry, feldspar is the main flux material used, with quantities ranging between 35 and 50%. Studies focus on the discovery of materials with flux characteristics that can reduce the consumption of feldspar by porcelain tiles industry. In this context, the coffee husk ashes, a residue obtained when coffee husks are burned to produce heat for the dryers during the processing of the green fruit, have as main chemical constituents potassium, calcium and magnesium, giving them characteristics of fluxing material. Brazil is the largest coffee producer in the world and is responsible for over 30% of the world s production. In this work a physical treatment of coffee husk ash was carried out in order to eliminate the organic matter and, after this, two by-products were obtained: residual wastes R1 and R2. Both residues were added separately as single fluxes and also in association with feldspar in mixtures with raw materials collected in a porcelain industry located in Dias d Ávila-Ba. The addition of these residues aimed to contribute to the reduction of the consumption of feldspar in the production of porcelain tiles. Specimens were produced with dimensions of 60 mm x 20 mm x 6 mm in an uniaxial die with compacting pressure of 45 MPa. The samples were heated to a temperature of 1200 °C, for 8 minutes. Tests were performed to characterize the raw materials by XRF, XRD, particle size analysis, DTA and TGA and, additionally, the results of the physical properties of water absorption, apparent porosity, linear shrinkage, density, dilatometry, flexural strength and SEM of sintered body were analyzed. Additions of less than 8% of the residue R1 contributed to the decrease of porosity, but the mechanical strength of the samples was not satisfactory. Additions of 5% the R2 residue contributed significantly to decrease the water absorption and apparent porosity, and also to increase the mechanical strength. Samples with addition of feldspar associated with the R2 residue, in proportions of 6.7% of R2 and 6.7% of feldspar, led to results of water absorption of 0.12% and mechanical strength of 46 MPa, having parameters normalized to the manufacture of porcelain stoneware tiles

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work reports the influence of the poly (ethylene terephthalate) textile surface modification by plasmas of O2 and mixtures (N2 + O2), on their physical and chemical properties. The treatment was carried out in a vacuum chamber. Some parameters remained constant during all treatment, such as: Voltage 470 V; Pressure 1,250 Mbar; Current: 0, 10 A and gas flow: 10 cm3/min. Other parameters, such as working gas composition and treatment time, were modified as the following: to the O2 plasma modified samples only the treatment time was changed (10, 20, 30, 40, 50 and 60 minutes). To the plasma with O2 and N2 only the chemical concentrations were changed. Through Capillary tests (vertical) an increase in textile wettability was observed as well as its influence on aging time and its consequence on wettability. The surface functional groups created after plasma treatments were investigated using X-ray Photoelectron Spectroscopy (XPS). The surface topography was examined by scanning electron microscope (SEM)