144 resultados para Influência do agregado


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of the physical and mechanic properties is an analysis of unquestioned importance on the production of the ceramic materials. In the region of the Recôncavo Baiano, there are ceramic and small brick factories, that still use rudimentary techniques, where the necessity of characterization of raw materials is denounced by the quality of the final product. The present work has for objective to study the behavior of the clay proceeding from the region of the Recôncavo, between the cities of Candeias and Camaçari/Ba, with addition of 5, 10 and 15% by weight of brick scraps, trying to optimize the physic and mechanical properties of the final product, aiming a better possibility of being manufactured, mechanic resistance, low linear retraction and water absorption. The brick scraps and the clay were characterized by FRX, DRX, TG, ATD and the granulometric analysis. Samples for testing where prepared by uniaxial pressing at 25Mpa, in 60x20x5mm size. The evaluated technological properties were: linear retraction, water absorption, apparent porosity and flexural strength. The samples were burned in electric oven in the temperatures of 850º, 950º and 1050ºC and compared its mechanical properties and the gresification. With addition of 15% by weight of brick scraps and burning at 900º-1000ºC the samples showed properties superior to that clay

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last decades there was a concentrate effort of researchers in the search for options to the problem of the continuity of city development and environmental preservation. The recycling and reuse of materials in industry have been considerate as the best option to sustainable development. One of the relevant aspects in this case refers to the rational use of electrical energy. At this point, the role of engineering is to conceive new processes and materials, with the objective of reducing energy consumption and maintaining, at the same time the benefits of the technology. In this context, the objective of the present research is to analyze quantitatively the thermal behavior of walls constructed with concrete blocks which composition aggregates the expanded polystyrene (EPS) reused in the shape of flakes and in the shape of a board, resulting in a “light concrete”. Experiments were conducted, systematically, with a wall (considerate as a standard) constructed with blocks of ordinary concrete; two walls constructed with blocks of light concrete, distinct by the proportion of EPS/sand; a wall of ceramic bricks (“eight holes” type) and a wall with ordinary blocks of cement, in a way to obtain a comparative analysis of the thermal behavior of the systems. Others tests conducted with the blocks were: stress analysis and thermal properties analysis (ρ, cp e k). Based on the results, it was possible to establish quantitative relationship between the concentration (density) of EPS in the constructive elements and the decreasing of the heat transfer rate, that also changes the others thermal properties of the material, as was proved. It was observed that the walls of light concrete presents better thermal behavior compared with the other two constructive systems world wide used. Based in the results of the investigation, there was shown the viability of the use of EPS as aggregate (raw material) in the composition of the concrete, with the objective of the fabrication of blocks to non-structural masonry that works as a thermal insulation in buildings. A direct consequence of this result is the possibility of reduction of the consume of the electrical energy used to climatization of buildings. Other aspect of the investigation that must be pointed was the reuse of the EPS as a raw material to civil construction, with a clear benefit to reducing of environmental problems

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The production of roof tiles in the state of Rio Grande do Norte accounts for around 60% of the total of ceramic pieces produced. There is a need for investment to improve quality and productivity, thereby promoting technological innovations. Accordingly, the aim of this study is to determine the effect of kaolin, potassium feldspar and quartz in two standard formulations, as well as the effect of sintering temperature on the technological properties of linear firing shrinkage, water absorption and bending rupture stress, by fitting the statistical model and using multiple linear regression to assess the relationship between technological properties and independent variables. The raw materials were characterized using the following techniques: X-ray fluorescence (XRF), X-ray diffraction (XRF), rational analysis (RA), differential thermal analysis (DTA) and granulometric analysis (GA). The test specimens were compacted by uniaxial pressure (25 MPa), dried in a stove at 110 ºC for 24 hours and sinterized at 850 ºC, 950 ºC and 1050 ºC and held isothermal for 30 minutes. The results obtained indicate that the addition of kaolin to two standard formulations (M and R) promoted a reduction in water absorption values and an increase in bending rupture stress values. The sintering temperatures for group M that resulted in the lowest linear firing shrinkage and water absorption values were 850 ºC and 950 ºC, respectively, and the highest bending rupture stress values were reached at a temperature of 950 ºC. In the case of group R, the sintering temperature that obtained the lowest water absorption and linear firing shrinkage values was 850 ºC, and the highest bending rupture stress values were attained at a temperature of 1050 ºC. This work explains the statistical approach used to fit the model that describes the relationship between the technological properties and percentage of kaolin, quartz and feldspar, as well as the models that enable predictions, provided that the lower and upper limits of the percentage of clay minerals, flux and quartz used in this study are respected. Statistica 6 software was used and results were obtained by stepwise forward regression

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditional ceramics have an important role in the economy of Rio Grande do Norte. The local industries manufacture over 50 million shingles a month, corresponding to 60% of their overall production. As a result of processing flaws, roughly 20% of the production must be discarded, since little or no use has been envisaged for such fired components. Therefore, the use of this kind of residue, especially in the composition of other ceramic materials, comes as an interesting option from the economical and environmental point of view. In this scenario, the objective of the present study was to assess the effect of the addition of fired shingle waste in the composition of porcelainized stoneware tiles. To that end, two porcelainized stoneware tiles compositions were initially prepared. Subsequently, contents from 10 to 30% of roofing tiles chamote were added to each one of them. All raw materials and grog were characterized by FRX, XRD, and thermal analysis. The ceramics were fired using natural gas for 30 min at different temperatures, i.e. 1150, 1200 and 1250ºC, and fully characterized. The addition of roofing tiles chamote resulted in composition with superior properties compared to additive-free compositions. Porcelainized stoneware tiles products that fulfill required standards for practical applications were achieved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of reflective surfaces functioning as thermal insulator has grown significantly over the years. Reflective thermal insulator are materials that have several characteristics such as low emissivity, low absorptivity and high reflectivity in the infrared spectrum. The use of these materials has grown a lot lately, since it contains several important radioactive properties that minimize the heat loss of thermal systems and cooling systems that are used to block the heat on the roof of buildings. A system made of three surfaces of 316 stainless steel mirror was built to analyze the influence of reflective surfaces as a way to reduce the heat loss and thereby conserve the energy of a thermal system. The system was analyzed both with and without the presence of vacuum, and then compared with a system that contained glass wool between the stainless steel mirror walls, since this isolator is considered resistive and also broadly used around the world in thermal systems. The reflectivity and emissivity of the surfaces used were also measured in this experiment. A type K thermocouple was fixed on the wall of the system to obtain the temperature of the stainless steel mirror surfaces and to analyze the thermal behavior of each configuration used. The results showed an efficiency of 13% when the reflective surfaces were used to minimize the heat loss of the thermal system. However, the system with vacuum had the best outcome, a 60% efficiency. Both of these were compared to the system made of glass wool as a thermal insulator

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To obtain a process stability and a quality weld bead it is necessary an adequate parameters set: base current and time, pulse current and pulse time, because these influence the mode of metal transfer and the weld quality in the MIG-P, sometimes requiring special sources with synergistic modes with external control for this stability. This work aims to analyze and compare the effects of pulse parameters and droplet size in arc stability in MIG-P, four packets of pulse parameters were analysed: Ip = 160 A, tp = 5.7 ms; Ip = 300 A and tp = 2 ms, Ip = 350 A, tp = 1.2 ms and Ip = 350 A, tp = 0.8 ms. Each was analyzed with three different drop diameters: drop with the same diameter of the wire electrode; droplet diameter larger drop smaller than the diameter of the wire electrode. For purposes of comparison the same was determined relation between the average current and welding speed was determined generating a constant (Im / Vs = K) for all parameters. Welding in flat plate by simple deposition for the MIG-P with a distance beak contact number (DBCP) constant was perfomed subsequently making up welding in flat plate by simple deposition with an inclination of 10 degrees to vary the DBCP, where by assessment on how the MIG-P behaved in such a situation was possible, in addition to evaluating the MIG-P with adaptive control, in order to maintain a constant arc stability. Also high speed recording synchronized with acquiring current x voltage (oscillogram) was executed for better interpretation of the transfer mechanism and better evaluation in regard to the study of the stability of the process. It is concluded that parameters 3 and 4 exhibited greater versatility; diameters drop equal to or slightly less than the diameter of the wire exhibited better stability due to their higher frequency of detachment, and the detachment of the drop base does not harm the maintenance the height of the arc

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aims to evaluate the mechanical properties of polymer matrix composites reinforced with sisal fabric bidirectional tissue (Agave sisalana,) and E-glass fibers, containing the following configuration: a polymer matrix hybrid composite (Polyester Resin orthophalic) reinforced with three (3) layers of glass fibers and alternating-2 (two) layers of bidirectional sisal fabric, and finally a composite of polymer matrix reinforced with five (5) layers of glass fiber mat-type E. For this purpose as first step, the preparation of by sisal, since they are not on the market. The composites were made by manual lamination (Hand lay-up) and evaluated for tensile properties and three point bending both in the dry, and wet conditions aswele as immersed in oil. Macroscopic and microscopic characteristics of the materialsweve awalysed, after the completion of the mechanical tests. After the studies, it was proven that the sisal fiber decreases the tensile stiffness of the material above 50% for both situations studied the tensile strength of the material decreases by approximately 40% for the cases mentioned, and when compared to the specific strength stiffness values drop to 14.6% and 29.02% respectively for the dry state only. Constants for bending the values were are to approximately 50% to 25% for strength and stiffness of the material for the cases dry, wet and immersed in oil. Under the influence of tension fluids do not interfere in the stiffness of the material for the bending tests, the same does not occur with the resistance, and these values are modified only in the cases stiffness and flexural strength

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays generation ethanol second, that t is obtained from fermentation of sugars of hydrolyses of cellulose, is gaining attention worldwide as a viable alternative to petroleum mainly for being a renewable resource. The increase of first generation ethanol production i.e. that obtained from sugar-cane molasses could lead to a reduction of lands sustainable for crops and food production. However, second generation ethanol needs technologic pathway for reduce the bottlenecks as production of enzymes to hydrolysis the cellulose to glucose i.e. the cellulases as well as the development of efficient biomass pretreatment and of low-cost. In this work Trichoderma reesei ATCC 2768 was cultivated under submerged fermentation to produce cellulases using as substrates waste of lignocellulosic material such as cashew apple bagasse as well as coconut bagasse with and without pretreatment. For pretreatment the bagasses were treated with 1 M NaOH and by explosion at high pressure. Enzyme production was carried out in shaker (temperature of 27ºC, 150 rpm and initial medium pH of 4.8). Results showed that T.reesei ATCC 2768 showed the higher cellulase production when the cashew apple bagasse was treated with 1M NaOH (2.160 UI/mL of CMCase and 0.215 UI/mL of FPase), in which the conversion of cellulose, in terms of total reducing sugars, was of 98.38%, when compared to pretreatment by explosion at high pressure (0.853 UI/mL of CMCase and 0.172 UI/mL of Fpase) showing a conversion of 47.39% of total reducing sugars. Cellulase production is lower for the medium containing coconut bagasse treated with 1M NaOH (0.480 UI/mL of CMcase and 0.073 UI/mL of FPase), giving a conversion of 49.5% in terms of total reducing sugars. Cashew apple bagasse without pretreatment showed cellulase activities lower (0.535 UI/mL of CMCase and 0,152 UI/mL of FPase) then pretreated bagasse while the coconut bagasse without pretreatment did not show any enzymatic activity. Maximum cell concentration was obtained using cashew nut bagasse as well as coconut shell bagasse treated with 1M NaOH, with 2.92 g/L and 1.97 g/L, respectively. These were higher than for the experiments in which the substrates were treated by explosion at high pressure, 1.93 g/L and 1.17 g/L. Cashew apple is a potential inducer for cellulolytic enzymes synthysis showing better results than coconut bagasse. Pretreatment improves the process for the cellulolytic enzyme production

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bio-oil obtained from the pyrolysis of biomass has appeared as inter-esting alternative to replace fossil fuels. The aim of this work is to evaluate the influence of temperature on the yield of products originating from the pyrolysis process of the powder obtained from the dried twigs of avelós (Euphorbia tirucalli), using a rotating cylinder reactor in laboratory scale. The biomass was treated and characterized by: CHNS, moisture, volatiles, fixed carbon and ashes, as well as evaluation of lignin, cellulose and hemicellulose, besides other instrumental techniques such as: FTIR, TG/DTG, DRX, FRX and MEV. The activation energy was evaluated in non-isothemichal mode with heating rates of 5 and 10 oC/min. The obtained results showed biomass as feedstock with potential for biofuel production, because presents a high organic matter content (78,3%) and fixed-carbon (7,11%). The activation energy required for the degradation of biomass ranged between 232,92 392,84 kJ/mol, in the temperature range studied and heating rate of 5 and 10°C/min. In the pyrolysis process, the influence of the reaction temperature was studied (350-520 ° C), keeping constant the other variables, such as, the flow rate of carrier gas, the centrifugal speed for the bio-oil condensationa, the biomass flow and the rotation of the reactor. The maximum yield of bio-oil was obtained in the temperature of 450°C. In this temperature, the results achieved where: content of bio-oil 8,12%; char 32,7%; non-condensed gas 35,4%; losts 23,8%; gross calorific value 3,43MJ/kg; pH 4,93 and viscosity 1,5cP. The chromatographic analysis of the bio-oil produced under these conditions shows mainly the presence of phenol (17,71%), methylciclopentenone (10,56%) and dimethylciclopentenone (7,76%)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bio-oil obtained from the pyrolysis of biomass has appeared as inter-esting alternative to replace fossil fuels. The aim of this work is to evaluate the influence of temperature on the yield of products originating from the pyrolysis process of the powder obtained from the dried twigs of avelós (Euphorbia tirucalli), using a rotating cylinder reactor in laboratory scale. The biomass was treated and characterized by: CHNS, moisture, volatiles, fixed carbon and ashes, as well as evaluation of lignin, cellulose and hemicellulose, besides other instrumental techniques such as: FTIR, TG/DTG, DRX, FRX and MEV. The activation energy was evaluated in non-isothemichal mode with heating rates of 5 and 10 oC/min. The obtained results showed biomass as feedstock with potential for biofuel production, because presents a high organic matter content (78,3%) and fixed-carbon (7,11%). The activation energy required for the degradation of biomass ranged between 232,92 392,84 kJ/mol, in the temperature range studied and heating rate of 5 and 10°C/min. In the pyrolysis process, the influence of the reaction temperature was studied (350-520 ° C), keeping constant the other variables, such as, the flow rate of carrier gas, the centrifugal speed for the bio-oil condensationa, the biomass flow and the rotation of the reactor. The maximum yield of bio-oil was obtained in the temperature of 450°C. In this temperature, the results achieved where: content of bio-oil 8,12%; char 32,7%; non-condensed gas 35,4%; losts 23,8%; gross calorific value 3,43MJ/kg; pH 4,93 and viscosity 1,5cP. The chromatographic analysis of the bio-oil produced under these conditions shows mainly the presence of phenol (17,71%), methylciclopentenone (10,56%) and dimethylciclopentenone (7,76%)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In wastewater treatment, activated sludge systems have been a technology widely applied as secondary treatment. During this step, which has a strong biological aspect, it is necessary to introduce oxygen supply for the maintenance of metabolic activity of the bacteria through the aerators. Aeration devices are responsible for most of the energy consumption in this stage. In this background, the influence of three aeration intensities (atmospheric air flow 3.5, 7.0 and 10.5 L.min-1) and the concentration of dissolved oxygen (DO) on the dimension of activated sludge flocs as well as on the efficiency of organic matter removal were assessed using a traditional activated sludge system which was fed with synthetic domestic wastewater. Samples were taken weekly from the three units that make up the system feed, aeration and storage tank in order to verify the Chemical Oxygen Demand (COD). It was established the process efficiency through a comparison between the initial and final COD. Besides the parameters already mentioned, this monitoring work on activated sludge batch system was also observed by Mixed Liquor Suspend Solids (MLSS), Volatile Suspend Solids (VSS), pH and temperature measures. The results have showed a maximum removal efficiency around 75% in the first aeration sequence and approximately 85% for the second and third one. For the first aeration, the DO concentration remained higher than 3.0 mg.L-1 and a diameter range from 10 to 60 μm was observed. In the second e third sequence, the DO concentration remained higher than 4.0 mg.L-1 with a diameter range of 10 until 200 μm. Although the sequence 1 and 2 have presented similar performances for organic matter removal, the sequence 2 promoted a regular floc size distribution and with lower values of Sludge Volumetric Index (SVI) meaning a better flocculating ability. In addition, the results reaffirmed what the literature has reported: higher DO concentrations produce flocs with greater dimensions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Petroleum Refinery wastewaters (PRW) have hart-to-degrade compounds, such as: phenols, ammonia, cyanides, sulfides, oils and greases and the mono and polynuclear aromatic hydrocarbons: benzene, toluene and xylene (BTX), acenaphthene, nitrobenzene and naphtalene. It is known that the microrganisms activity can be reduced in the presence of certain substances, adversely affecting the biological process of wastewater treatment. This research was instigated due the small number of studies regarding to this specific topic in the avaiable literature. This body of work ims to evaluate the effect of toxic substances on the biodegradability of the organic material found in PRW. Glucose was chosen as the model substrate due to its biodegradable nature. This study was divided into three parts: i) a survey of recalcitants compounds and the removal of phenol by using both biological and photochemical-biological processes; ii) biomass aclimation and iii) evaluation of the inhibitory effect certain compounds have on glucose biodegradation. The phenol degradation experiments were carried out in an activity sludge system and in a photochemical reactor. The results showed the photochemical-biological process to be more effective on phenol degradation, suggesting the superioruty of a combined photochemical-biological treatment when compared with a simple biological process for phenol removal from industry wastewaters. For the acclimation step, was used an activated sludge from industrial wastewaters. A rapid biomass aclimation to a synthetic solution composed of the main inhibitory compouns fpund in a PRW was obtained using the following operation condition: (pH = 7,0; DO ≥ 2,0 mg/L; RS = 20 days e qH = 31,2 and 20,4 hours), The last part was consisted of using respirometry evaluation toxicity effects of selected compounds over oxygen uptake rate to adaptated and non adaptated biomass in the presence of inhibitory compounds. The adaptated sludge showed greater degration capacity, with lower sensibility to toxic effects. The respirometry has proved to be very practical, as the techiniques used were simple and rapid, such as: Chemical Oxygen Demand (COD), Dissolved Oxygen (DO), and Volatile Suspended Solids (VSS). Using the latter it is possible to perform sludge selection to beggingthe process; thus allowing its use for aerobic treatment system`s behacior prediction

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seeking a greater appreciation of cheese whey was developed to process the hydrogenation of lactose for the production of lactitol, a polyol with high added value, using the catalyst Ni / activated carbon (15% and 20% nickel), the nitride Mo2N, the bimetallic carbide Ni-Mo/ activated carbon and carbide Mo2C. After synthesis, the prepared catalysts were analyzed by MEV, XRD, laser granulometry and B.E.T. The reactor used in catalytic hydrogenation of lactose was the type of bed mud with a pressure (68 atm), temperature (120 oC) and stirring speed (500 rpm) remained constant during the experiments. The system operated in batch mode for the solid and liquid and semi-continuous to gas. Besides the nature of the catalyst, we studied the influence of pH of reaction medium for Mo2C carbide as well as evaluating the character of the protein inhibitor and chloride ions on the activity of catalysts Ni (20%)/Activated Carbon and bimetallic carbide Ni-Mo/Activated Carbon. The decrease in protein levels was performed by coagulation with chitosan and adsorption of chloride ions was performed by ion exchange resins. In the process of protein adsorption and chloride ions, the maximum percentage extracted was about 74% and 79% respectively. The micrographs of the powders of Mo2C and Mo2N presented in the form of homogeneous clusters, whereas for the catalysts supported on activated carbon, microporous structure proved impregnated with small particles indicating the presence of metal. The results showed high conversion of lactose to lactitol 90% for the catalyst Ni (20%)/Activated Carbon at pH 6 and 46% for the carbide Mo2C pH 8 (after addition of NH4OH) using the commercial lactose. Monitoring the evolution of the constituents present in the reaction medium was made by liquid chromatography. A kinetic model of heterogeneous Langmuir Hinshelwood type was developed which showed that the estimated constants based catalysts promoted carbide and nitride with a certain speed the adsorption, desorption and production of lactitol

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aims at studying the influence of the concentration of calcite, its grain size and sintering temperature to obtain porous coating formulations that meet the design specifications. The experiments involved the physical-chemical and mineralogical caracterization of the raw materials, and mechanical tests on specimens dried and sintered, performing a planning mixture and factorial experiment, using the response surface methodology. The ceramic bodies studied were prepared by dry process, characterized, placed in conformity by uniaxial pressing and sintered at temperatures of 940 º C, 1000ºC, 1060ºC, 1120°C and 1180°C using a fast-firing cycle. The crystalline phases formed during sintering at temperatures under study, revealed the presence of anorthite and wolastonite, and quartz-phase remaining. These phases were mainly responsible for the physical and mechanical properties of the sintered especimens. The results shown that as increases the participation of carbonate in the composition of ceramic bodies there is an increase of water absorption and a slight reduction in linear shrinkage for all sintering temperatures. As for the mechanical strength it was observed that it tended to decrease for sintering at temperatures between 940 ° C and 1060 ° C and to increase for sintering at temperatures above 1060 ° C occurring with greater intensity for compositions with higher content of calcite. The resistence decreased with increasing participation of quartz in all sintering temperatures. The decrease in grain size of calcite caused a slight increase in water absorption for formulation with the same concentration of carbonate, remaining virtually unchanged the results of linear shrinkage and mechanical strength. In conclusion, porous ceramic coating (BIII) can be obtained using high concentrations of calcite and keeping the properties required in technical standards and that the particle size of calcite can be used as tuning parameter for the properties of ceramic products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Escherichia coli has been one of the most widely used hosts in recombinant protein production, in both laboratory and industrial scale since the advent of recombinant DNA technology. Despite the substantial progress of studies on the molecular biology and immunology of infections, there is currently no medication-based prophylaxis capable of preventing leishmaniasis. As such, there is a great need to identify specific antigens for the development of vaccines and diagnostic kits against visceral leishmaniasis. Thus, the primary goal of the present study is to assess the influence of cultivation conditions on the production of Leishmania chagasi antigens, carried out in a rotating incubator and bioreactor. To that end, several assays were conducted to evaluate the kinetic behavior of antigens (648, 503) of Leishmania. i. chagasi in two different compositions of media (2xTY, TB), with and without an inducer. In order to improve expression, assays were performed in a benchtop bioreactor using the best conditions obtained in a rotating incubator, in addition to assessing the influence of stirring speed. Results show that high complexity of the cultivation medium favored kinetic growth of clones (648, 503). However, in assays submitted to induction by IPTG, this elevated complexity did not promote the expression of recombinant proteins. Expression of antigens 648 and 503 exhibited behavior associated with growth and, in terms of location, proteins 648 and 503 are intracellularly stored. Lactose may be the most adequate inducer in protein expression, when considering factors, cost, toxicity and stability. Elevated stirring may increase cell growth in clone 53, although it may not result in high concentrations for the protein of interest. On the other hand, positive results were obtained for all recombinant clones (648, 503) tested, confirmed by the electrophoretic profile