126 resultados para Hiker Dice. Algoritmo Exato. Algoritmos Heurísticos


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Universidade Federal do Rio Grande do Norte

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the quantitative analysis of glucose, triglycerides and cholesterol (total and HDL) in both rat and human blood plasma was performed without any kind of pretreatment of samples, by using near infrared spectroscopy (NIR) combined with multivariate methods. For this purpose, different techniques and algorithms used to pre-process data, to select variables and to build multivariate regression models were compared between each other, such as partial least squares regression (PLS), non linear regression by artificial neural networks, interval partial least squares regression (iPLS), genetic algorithm (GA), successive projections algorithm (SPA), amongst others. Related to the determinations of rat blood plasma samples, the variables selection algorithms showed satisfactory results both for the correlation coefficients (R²) and for the values of root mean square error of prediction (RMSEP) for the three analytes, especially for triglycerides and cholesterol-HDL. The RMSEP values for glucose, triglycerides and cholesterol-HDL obtained through the best PLS model were 6.08, 16.07 e 2.03 mg dL-1, respectively. In the other case, for the determinations in human blood plasma, the predictions obtained by the PLS models provided unsatisfactory results with non linear tendency and presence of bias. Then, the ANN regression was applied as an alternative to PLS, considering its ability of modeling data from non linear systems. The root mean square error of monitoring (RMSEM) for glucose, triglycerides and total cholesterol, for the best ANN models, were 13.20, 10.31 e 12.35 mg dL-1, respectively. Statistical tests (F and t) suggest that NIR spectroscopy combined with multivariate regression methods (PLS and ANN) are capable to quantify the analytes (glucose, triglycerides and cholesterol) even when they are present in highly complex biological fluids, such as blood plasma

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the potential of near-infrared reflectance spectroscopy (NIRS) as a rapid and non-destructive method to determine the soluble solid content (SSC), pH and titratable acidity of intact plums. Samples of plum with a total solids content ranging from 5.7 to 15%, pH from 2.72 to 3.84 and titratable acidity from 0.88 a 3.6% were collected from supermarkets in Natal-Brazil, and NIR spectra were acquired in the 714 2500 nm range. A comparison of several multivariate calibration techniques with respect to several pre-processing data and variable selection algorithms, such as interval Partial Least Squares (iPLS), genetic algorithm (GA), successive projections algorithm (SPA) and ordered predictors selection (OPS), was performed. Validation models for SSC, pH and titratable acidity had a coefficient of correlation (R) of 0.95 0.90 and 0.80, as well as a root mean square error of prediction (RMSEP) of 0.45ºBrix, 0.07 and 0.40%, respectively. From these results, it can be concluded that NIR spectroscopy can be used as a non-destructive alternative for measuring the SSC, pH and titratable acidity in plums

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditional applications of feature selection in areas such as data mining, machine learning and pattern recognition aim to improve the accuracy and to reduce the computational cost of the model. It is done through the removal of redundant, irrelevant or noisy data, finding a representative subset of data that reduces its dimensionality without loss of performance. With the development of research in ensemble of classifiers and the verification that this type of model has better performance than the individual models, if the base classifiers are diverse, comes a new field of application to the research of feature selection. In this new field, it is desired to find diverse subsets of features for the construction of base classifiers for the ensemble systems. This work proposes an approach that maximizes the diversity of the ensembles by selecting subsets of features using a model independent of the learning algorithm and with low computational cost. This is done using bio-inspired metaheuristics with evaluation filter-based criteria

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work performs an algorithmic study of optimization of a conformal radiotherapy plan treatment. Initially we show: an overview about cancer, radiotherapy and the physics of interaction of ionizing radiation with matery. A proposal for optimization of a plan of treatment in radiotherapy is developed in a systematic way. We show the paradigm of multicriteria problem, the concept of Pareto optimum and Pareto dominance. A generic optimization model for radioterapic treatment is proposed. We construct the input of the model, estimate the dose given by the radiation using the dose matrix, and show the objective function for the model. The complexity of optimization models in radiotherapy treatment is typically NP which justifyis the use of heuristic methods. We propose three distinct methods: MOGA, MOSA e MOTS. The project of these three metaheuristic procedures is shown. For each procedures follows: a brief motivation, the algorithm itself and the method for tuning its parameters. The three method are applied to a concrete case and we confront their performances. Finally it is analyzed for each method: the quality of the Pareto sets, some solutions and the respective Pareto curves

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of clustering methods for the discovery of cancer subtypes has drawn a great deal of attention in the scientific community. While bioinformaticians have proposed new clustering methods that take advantage of characteristics of the gene expression data, the medical community has a preference for using classic clustering methods. There have been no studies thus far performing a large-scale evaluation of different clustering methods in this context. This work presents the first large-scale analysis of seven different clustering methods and four proximity measures for the analysis of 35 cancer gene expression data sets. Results reveal that the finite mixture of Gaussians, followed closely by k-means, exhibited the best performance in terms of recovering the true structure of the data sets. These methods also exhibited, on average, the smallest difference between the actual number of classes in the data sets and the best number of clusters as indicated by our validation criteria. Furthermore, hierarchical methods, which have been widely used by the medical community, exhibited a poorer recovery performance than that of the other methods evaluated. Moreover, as a stable basis for the assessment and comparison of different clustering methods for cancer gene expression data, this study provides a common group of data sets (benchmark data sets) to be shared among researchers and used for comparisons with new methods

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi-classifier systems, also known as ensembles, have been widely used to solve several problems, because they, often, present better performance than the individual classifiers that form these systems. But, in order to do so, it s necessary that the base classifiers to be as accurate as diverse among themselves this is also known as diversity/accuracy dilemma. Given its importance, some works have investigate the ensembles behavior in context of this dilemma. However, the majority of them address homogenous ensemble, i.e., ensembles composed only of the same type of classifiers. Thus, motivated by this limitation, this thesis, using genetic algorithms, performs a detailed study on the dilemma diversity/accuracy for heterogeneous ensembles

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution of petroleum products through pipeline networks is an important problem that arises in production planning of refineries. It consists in determining what will be done in each production stage given a time horizon, concerning the distribution of products from source nodes to demand nodes, passing through intermediate nodes. Constraints concerning storage limits, delivering time, sources availability, limits on sending or receiving, among others, have to be satisfied. This problem can be viewed as a biobjective problem that aims at minimizing the time needed to for transporting the set of packages through the network and the successive transmission of different products in the same pipe is called fragmentation. This work are developed three algorithms that are applied to this problem: the first algorithm is discrete and is based on Particle Swarm Optimization (PSO), with local search procedures and path-relinking proposed as velocity operators, the second and the third algorithms deal of two versions based on the Non-dominated Sorting Genetic Algorithm II (NSGA-II). The proposed algorithms are compared to other approaches for the same problem, in terms of the solution quality and computational time spent, so that the efficiency of the developed methods can be evaluated

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The course of Algorithms and Programming reveals as real obstacle for many students during the computer courses. The students not familiar with new ways of thinking required by the courses as well as not having certain skills required for this, encounter difficulties that sometimes result in the repetition and dropout. Faced with this problem, that survey on the problems experienced by students was conducted as a way to understand the problem and to guide solutions in trying to solve or assuage the difficulties experienced by students. In this paper a methodology to be applied in a classroom based on the concepts of Meaningful Learning of David Ausubel was described. In addition to this theory, a tool developed at UFRN, named Takkou, was used with the intent to better motivate students in algorithms classes and to exercise logical reasoning. Finally a comparative evaluation of the suggested methodology and traditional methodology was carried out, and results were discussed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Multiobjective Spanning Tree is a NP-hard Combinatorial Optimization problem whose application arises in several areas, especially networks design. In this work, we propose a solution to the biobjective version of the problem through a Transgenetic Algorithm named ATIS-NP. The Computational Transgenetic is a metaheuristic technique from Evolutionary Computation whose inspiration relies in the conception of cooperation (and not competition) as the factor of main influence to evolution. The algorithm outlined is the evolution of a work that has already yielded two other transgenetic algorithms. In this sense, the algorithms previously developed are also presented. This research also comprises an experimental analysis with the aim of obtaining information related to the performance of ATIS-NP when compared to other approaches. Thus, ATIS-NP is compared to the algorithms previously implemented and to other transgenetic already presented for the problem under consideration. The computational experiments also address the comparison to two recent approaches from literature that present good results, a GRASP and a genetic algorithms. The efficiency of the method described is evaluated with basis in metrics of solution quality and computational time spent. Considering the problem is within the context of Multiobjective Optimization, quality indicators are adopted to infer the criteria of solution quality. Statistical tests evaluate the significance of results obtained from computational experiments

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main goal of this work is to investigate the suitability of applying cluster ensemble techniques (ensembles or committees) to gene expression data. More specifically, we will develop experiments with three diferent cluster ensembles methods, which have been used in many works in literature: coassociation matrix, relabeling and voting, and ensembles based on graph partitioning. The inputs for these methods will be the partitions generated by three clustering algorithms, representing diferent paradigms: kmeans, ExpectationMaximization (EM), and hierarchical method with average linkage. These algorithms have been widely applied to gene expression data. In general, the results obtained with our experiments indicate that the cluster ensemble methods present a better performance when compared to the individual techniques. This happens mainly for the heterogeneous ensembles, that is, ensembles built with base partitions generated with diferent clustering algorithms

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In development of Synthetic Agents for Education, the doubt still resides about what would be a behavior that could be considered, in fact, plausible for this agent's type, which can be considered as effective on the transmission of the knowledge by the agent and the function of emotions this process. The purpose of this labor has an investigative nature in an attempt to discover what aspects are important for this behavior consistent and practical development of a chatterbot with the function of virtual tutor, within the context of learning algorithms. In this study, we explained the agents' basics, Intelligent Tutoring Systems, bots, chatterbots and how these systems need to provide credibility to report on their behavior. Models of emotions, personality and humor to computational agents are also covered, as well as previous studies by other researchers at the area. After that, the prototype is detailed, the research conducted, a summary of results achieved, the architectural model of the system, vision of computing and macro view of the features implemented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the world we are constantly performing everyday actions. Two of these actions are frequent and of great importance: classify (sort by classes) and take decision. When we encounter problems with a relatively high degree of complexity, we tend to seek other opinions, usually from people who have some knowledge or even to the extent possible, are experts in the problem domain in question in order to help us in the decision-making process. Both the classification process as the process of decision making, we are guided by consideration of the characteristics involved in the specific problem. The characterization of a set of objects is part of the decision making process in general. In Machine Learning this classification happens through a learning algorithm and the characterization is applied to databases. The classification algorithms can be employed individually or by machine committees. The choice of the best methods to be used in the construction of a committee is a very arduous task. In this work, it will be investigated meta-learning techniques in selecting the best configuration parameters of homogeneous committees for applications in various classification problems. These parameters are: the base classifier, the architecture and the size of this architecture. We investigated nine types of inductors candidates for based classifier, two methods of generation of architecture and nine medium-sized groups for architecture. Dimensionality reduction techniques have been applied to metabases looking for improvement. Five classifiers methods are investigated as meta-learners in the process of choosing the best parameters of a homogeneous committee.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Multiobjective Spanning Tree Problem is NP-hard and models applications in several areas. This research presents an experimental analysis of different strategies used in the literature to develop exact algorithms to solve the problem. Initially, the algorithms are classified according to the approaches used to solve the problem. Features of two or more approaches can be found in some of those algorithms. The approaches investigated here are: the two-stage method, branch-and-bound, k-best and the preference-based approach. The main contribution of this research lies in the fact that no research was presented to date reporting a systematic experimental analysis of exact algorithms for the Multiobjective Spanning Tree Problem. Therefore, this work can be a basis for other research that deal with the same problem. The computational experiments compare the performance of algorithms regarding processing time, efficiency based on the number of objectives and number of solutions found in a controlled time interval. The analysis of the algorithms was performed for known instances of the problem, as well as instances obtained from a generator commonly used in the literature

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho aborda o problema de otimização em braquiterapia de alta taxa de dose no tratamento de pacientes com câncer, com vistas à definição do conjunto de tempos de parada. A técnica de solução adotada foi a Transgenética Computacional apoiada pelo método L-BFGS. O algoritmo desenvolvido foi empregado para gerar soluções não denominadas cujas distribuições de dose fossem capazes de eiminar o câncer e ao mesmo tempo preservar as regiões normais