109 resultados para Bacia do Araripe, NE do Brasil
Resumo:
The Borborema Province, Northeastern Brazil, had its internal structure investigated by different geophysical methods like gravity, magnetics and seismics. Additionally, many geological studies were also carried out to define the structural domains of this province. Despite the plethora of studies, there are still many important open aspects about its evolution. Here, we study the velocity structure of S-wave in the crust using dispersion of surface waves. The dispersion of surface waves allows an estimate of the average thickness of the crust across the region between the stations. The inversion of the velocity structure was carried out using the inter-station dispersion of surface waves of Rayleigh and Love types. The teleseismic events are mainly from the edges of the South and North American plates. The period of data collection occurred between 2007 and 2010 and we selected 7 events with magnitude above 5.0 MW and up to 40 km depth. The difference between the events back-azimuths and the interstation path was not greater than 10. We also know the depth of the Moho, results from Receiver Functions (Novo Barbosa, 2008), and use those as constrains in inversion. Even using different parameterizations of models for the inversion, our results were very similar the mean profiles velocity structure of S-wave. In pairs of stations located in the Cear´a Central Domain Borborema the province, there are ranges of depths for which the velocities of S are very close. Most of the results in the profile near the Moho complicate their interpretation at that depth, coinciding with the geology of the region, where there are many shear zones. In particular, the profile that have the route Potiguar Bacia in inter-station, had low velocities in the crust. We combine these results to the results of gravimetry and magnetometry (Oliveira, 2008) and receptor function (Novo Barbosa, 2008). We finally, the first results on the behavior of the velocity structure of S-wave with depth in the Province Borborema
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Resumo:
Inside the Borborema Province the Northwestern Ceará (NC) is one of the most seismic active regions. There are reports of an earthquake occurred in 1810 in the Granja town. On January, 2008 the seismic activity in NC has increased and it was deployed a seismographic network with 11 digital stations. In 2009, another earthquake sequence began and it was deployed another seismographic network in the Santana do Acaraú town with 6 stations. This thesis presents the results obtained by analyzing the data recorded in these two networks. The epicentral areas are located near the northeastern part of the Transbrasiliano Lineament, a shear zone with NE-SW-trending that cuts the study area. The hypocenters are located between 1km and 8km. The strike-slip focal mechanisms were found, which is predominant in the Borborema Province. An integration of seismological, geological and geophysical data was performed and it show that the seismogenic faults found are oriented in the same direction to the local brittle structures observed in field and magnetic lineaments. The SHmax (maximum compressional stress) direction in NC was estimated using an inversion of seven focal mechanisms. The horizontal maximum compression stress (σ1 = 300°) with orientation NW-SE and extension (σ3 = 210°) with NE-SW and σ2 vertical. These results are consistent with results of previous studies. The seismic activity recorded in NC is not related to a possible reactivation of the Transbrasiliano Lineament, by now.
Resumo:
Systems of incised valleys have been studied in different continental shelves, including the Brazilian continental margin. The interest to characterize this feature is given by the information that it can provide variations on sea level, as well as the ability to host economically significant quantities of hydrocarbons in reservoirs located in deposits filling of the incised valleys. This thesis has the overall objective to characterize the morphology and sedimentary cover of the incised valley Apodi-Mossoró, located in the Northern Continental shelf of Rio Grande do Norte state, adjacent to Areia Branca city. The methodology included the integration of satellite imagery, bathymetric data, sedimentological data, shallow seismic, and the identification of foraminifera. The results indicate that the ApodiMossró incised valley is currently formed by two channels, shallow channel and deep channel, which have distinct morphological and sedimentological characteristics. The deep channel has connection with one of the heads of the Apodi Canyon, located in the slope area. The acquisition, processing and interpretation of shallow seismic data allowed the recognition of the depositional surface, erosional surface, discordance, and sismofaceis. The erosional surface mapped from shallow seismic sections is possibly a indicative of an ancient surface of valley incision, where it would probably be associated with the limit Pleistocene/Holocene. Different sismofaceis were identified and reflect the rise in sea level with standards sometimes agradacional, sometimes progradational. The thickness of sediments on this surface was estimated at a maximum of 22m thick in the central portion of the incised valley. Statistically, there are differences between the adjacent continental shelf and channels, and between these channels, for the content of calcium carbonate, organic matter, sand and mud perceptual, except for the gravel grain size. The analysis of living and dead foraminifera showed the presence of fifty species distributed in regards to morphology, depth and type of sediment. Four type of seismic echocharacteres were identified and mapped, as well as their bedforms, indicating different sedimentary processes along the incised valley. The integration of results suggests an activation of the Apodi-Mossoró incised valley in the Late Pleistocene.
Resumo:
Located on the western edge of the Brazilian northeast, the Parnaíba Basin is an intra cratonic basin with oil production. This study aims at understanding its genesis and evolution, using aeromagnetic and gravity data. We used the spectral analysis of aeromagnetic data to map the depth to the bottom of the magnetic sources in order to assimilate this depth with the depth of the Curie isotherm, and infer the geothermal gradient. Using the spectral analysis technique, we succeeded in mapping the surface of the depth to the bottom of magnetic sources (SBFM), which marks the depth that occur magnetization. In the Parnaíba Basin the SBFM presented depths around -20,5 and -28,5 , which was consistent with an inversion of the same dataset using the technique of Magnetization Vector Inversion (MVI). Furthermore, SBFM topography correlates well with Moho depth, which was estimated from satellite gravimetric data from the GOCE mission (Gravity Field and Steady-State Ocean Circulation Explorer). Assuming that SBFM coincides with the Curie isotherm of magnetite (ICM), defined as the surface at which magnetite ( ) looses its ferromagnetic properties, it was possible to estimate the geothermal gradient. The geothermal gradient in the basin showed values between 19.2 and 26.5 , allowing to estimate the heat flow for the Parnaíba basin after assuming a conductivity of 2.69 . The resulting heat flow values ranged between 51.6 and 71.3 , which is consistent with values found in other works throughout the South American continent. Lithospheric thickness using an empirical relationship, finding values between -65.8 and -89.2 . We propose that thermal structure of Parnaíba basin is influenced by a deep thermal anomaly. This anomaly has heated the lithosphere beneath the basin and has resulted in relatively thin values for the lithospheric thickness and relatively high surface heat flow values. The origin of the anomaly is not clear, but the correlation between Curie depth and Moho topography, suggests that tectonic extension processes could have played a role.
Resumo:
The distribution of diagenetic alterations in Late Cenomanian siliciclastic reservoirs from Potiguar Basin was influenced by the stratigraphic framework and the depositional system. Seismic sections and geophysical logs of two wells drilled in the SW portion of the mentioned basin above register regional stratigraphic surfaces representing maximum floods related to a transgressive event. The sequential analysis of 80 m of drill core (~450 m deep) recognized nine depositional facies with an upwards granodecrescent standard piling that limits cycles with an erosional conglomeratic base (lag) overlain by intercalations of medium to very fine sandstones showing cross bedding (channel, planar and low angled) and horizontal bedding (plane-parallel , wave and flaser). The top of the cycles is marked by the deposition of pelites and the development of paleosoils and lagoons. The correlation of genetically related facies reveals associations of channel fillings, crevasse, and flood plains deposited in a transgressive system. Detailed descriptions of seventy nine thin sections aided by MEV-EBSD/EDS, DRX and stable isotope analyses in sandstones revealed an arcosian composition and complex textural arrays with abundant smectite fringes continuously covering primary components, mechanically infiltrated cuticles and moldic and intragrain pores. K-feldspar epitaxial overgrowth covers microcline and orthoclase grains before any other phase. Abundant pseudomatrix due to the compactation of mud intraclasts concentrate along the stratification planes, locally replaced by macrocristalline calcite and microcrystalline and framboidal pyrite. Kaolinite (booklets and vermicular), microcrystalline smectite, microcrystalline titanium minerals and pyrite replace the primary components. The intergrain porosity prevails over the moldic, intragrain and contraction porosities. The pores are poorly connected due to the presence of intergranular smectite, k-feldspar overgrowth, infiltrated mud and pseudomatrix. The sandstones were subjected to eodiagenetic conditions next to the surface and shallow burial mesodiagenetic conditions. The diagenetic alterations reduced the porosity and the permeability mainly due to the precipitation of smectite fringes, compactation of mud intraclasts onto the pseudomatrix and cementing by poikilotopic calcite characterizing different reservoir petrofacies. These diagenetic products acted as barriers and detours to the flow of fluids thus reducing the quality of the reservoir.
Resumo:
The objective of this research was to investigate monthly climatological, seasonal, annual and interdecadal of the reference evapotranspiration (ETo) in Acre state in order to better understand its spatial and temporal variability and identify possible trends in the region. The study was conducted with data from Rio Branco municipalities, the state capital, Tarauacá and Cruzeiro do Sul considering a 30-year period (1985-2014), from monthly data from weather stations surface of the National Institute of Meteorology. The methodology was held, first, the consistency of meteorological data. Thus, it was made the gap filling in the time series by means of multivariate techniques. Subsequently were performed statistical tests trend (Mann-Kendall) and homogeneity, by Sen's estimator of the magnitude of this trend is estimated, as well as computational algorithms containing parametric and non-parametric tests for two samples to identify from that year the trend has become significant. Finally, analysis of variance technique (ANOVA) was adopted in order to verify whether there were significant differences in average annual evapotranspiration between locations. The indirect method of Penman-Montheith parameterized by FAO was used to calculate the ETo. The results of this work through examination of the descriptive statistics showed that the ETo the annual average was 3.80, 2.92 and 2.86 mm day-1 year, to Rio Branco, Tarauacá and Cruzeiro do Sul, respectively. Featuring quite remarkable seasonal pattern with a minimum in June and a maximum in October, with Rio Branco to town one with the strongest signal (amplitudes) on the other hand, the Southern Cross presented the highest variability among the studied locations. By ANOVA it was found that the average annual statistically different for a significance level of 1% between locations, but the annual average between Cruzeiro do Sul and Tarauacá no statistically significant differences. For the three locations, the 2000s was the one with the highest ETo values associated with warmer waters of the North Atlantic basin and the 80s to lower values, associated with cooler waters of this basin. By analyzing the Mann-kendall and Sen estimator test, there was a trend of increasing the seasonal reference evapotranspiration (fall, winter and spring) on the order of 0.11 mm per decade and that from the years of 1990, 1996 and 2001 became statistically significant to the localities of Cruzeiro do Sul Tarauacá and Rio Branco, respectively. For trend analysis of meteorological parameters was observed positive trend in the 5% level of significance, for average temperature, minimum temperature and solar radiation.
Resumo:
The fracturing in carbonate rocks has been attracting increasingly attention due to new oil discoveries in carbonate reservoirs. This study investigates how the fractures (faults and joints) behave when subjected to different stress fields and how their behavior may be associated with the generation of karst and consequently to increased secondary porosity in these rocks. In this study I used satellite imagery and unmanned aerial vehicle UAV images and field data to identify and map faults and joints in a carbonate outcrop, which I consider a good analogue of carbonate reservoir. The outcrop comprises rocks of the Jandaíra Formation, Potiguar Basin. Field data were modeled using the TECTOS software, which uses finite element analysis for 2D fracture modeling. I identified three sets of fractures were identified: NS, EW and NW-SE. They correspond to faults that reactivate joint sets. The Ratio of Failure by Stress (RFS) represents stress concentration and how close the rock is to failure and reach the Mohr-Coulomb envelopment. The results indicate that the tectonic stresses are concentrated in preferred structural zones, which are ideal places for carbonate dissolution. Dissolution was observed along sedimentary bedding and fractures throughout the outcrop. However, I observed that the highest values of RFS occur in fracture intersections and terminations. These are site of karst concentration. I finally suggest that there is a relationship between stress concentration and location of karst dissolution in carbonate rocks.
Resumo:
The fracturing in carbonate rocks has been attracting increasingly attention due to new oil discoveries in carbonate reservoirs. This study investigates how the fractures (faults and joints) behave when subjected to different stress fields and how their behavior may be associated with the generation of karst and consequently to increased secondary porosity in these rocks. In this study I used satellite imagery and unmanned aerial vehicle UAV images and field data to identify and map faults and joints in a carbonate outcrop, which I consider a good analogue of carbonate reservoir. The outcrop comprises rocks of the Jandaíra Formation, Potiguar Basin. Field data were modeled using the TECTOS software, which uses finite element analysis for 2D fracture modeling. I identified three sets of fractures were identified: NS, EW and NW-SE. They correspond to faults that reactivate joint sets. The Ratio of Failure by Stress (RFS) represents stress concentration and how close the rock is to failure and reach the Mohr-Coulomb envelopment. The results indicate that the tectonic stresses are concentrated in preferred structural zones, which are ideal places for carbonate dissolution. Dissolution was observed along sedimentary bedding and fractures throughout the outcrop. However, I observed that the highest values of RFS occur in fracture intersections and terminations. These are site of karst concentration. I finally suggest that there is a relationship between stress concentration and location of karst dissolution in carbonate rocks.
Resumo:
The discussion about rift evolution in the Brazilian Equatorial margin during the South America-Africa breakup in the Jurassic/Cretaceous has been focused in many researches. But rift evolution based on development and growth of faults has not been well explored. In this sense, we investigated the Cretaceous Potiguar Basin in the Equatorial margin of Brazil to understand the geometry of major faults and the influence of crustal heterogeneity and preexisting structural fabric in the evolution of the basin internal architecture. Previous studies pointed out that the rift is an asymmetrical half-graben elongated along the NE-SW direction. We used 2D seismic, well logs and 3D gravity modeling to analyze four major border fault segments and determine their maximum displacement (Dmax) and length (L) ratio in the Potiguar Rift. We constrained the 3D gravity modeling with well data and the interpretation of seismic sections. The difference of the fault displacement measured in the gravity model is in the order of 10% compared to seismic and well data. The fault-growth curves allowed us to divide the faulted rift border into four main fault segments, which provide roughly similar Dmax/L ratios. Fault-growth curves suggest that a regional uniform tectonic mechanism influenced growth of the rift fault segments. The variation of the displacements along the fault segments indicates that the fault segments were formed independently during rift initiation and were linked by hard and soft linkages. The latter formed relay ramps. In the interconnection zones the Dmax/L ratios are highest due to interference of fault segment motions. We divided the evolution of the Potiguar Rift into five stages based on these ratios and correlated them with the major tectonic stages of the breakup between South America and Africa in Early Cretaceous.
Resumo:
The discussion about rift evolution in the Brazilian Equatorial margin during the South America-Africa breakup in the Jurassic/Cretaceous has been focused in many researches. But rift evolution based on development and growth of faults has not been well explored. In this sense, we investigated the Cretaceous Potiguar Basin in the Equatorial margin of Brazil to understand the geometry of major faults and the influence of crustal heterogeneity and preexisting structural fabric in the evolution of the basin internal architecture. Previous studies pointed out that the rift is an asymmetrical half-graben elongated along the NE-SW direction. We used 2D seismic, well logs and 3D gravity modeling to analyze four major border fault segments and determine their maximum displacement (Dmax) and length (L) ratio in the Potiguar Rift. We constrained the 3D gravity modeling with well data and the interpretation of seismic sections. The difference of the fault displacement measured in the gravity model is in the order of 10% compared to seismic and well data. The fault-growth curves allowed us to divide the faulted rift border into four main fault segments, which provide roughly similar Dmax/L ratios. Fault-growth curves suggest that a regional uniform tectonic mechanism influenced growth of the rift fault segments. The variation of the displacements along the fault segments indicates that the fault segments were formed independently during rift initiation and were linked by hard and soft linkages. The latter formed relay ramps. In the interconnection zones the Dmax/L ratios are highest due to interference of fault segment motions. We divided the evolution of the Potiguar Rift into five stages based on these ratios and correlated them with the major tectonic stages of the breakup between South America and Africa in Early Cretaceous.
Resumo:
This thesis presents and discusses the results of ambient seismic noise correlation for two different environments: intraplate and Mid-Atlantic Ridge. The coda wave interferometry method has also been tested for the intraplate data. Ambient noise correlation is a method that allows to retrieve the structural response between two receivers from ambient noise records, as if one of the station was a virtual source. It has been largely used in seismology to image the subsurface and to monitor structural changes associated mostly with volcanic eruptions and large earthquakes. In the intraplate study, we were able to detect localized structural changes related to a small earthquake swarm, which main event is mR 3.7, North-East of Brazil. We also showed that the 1-bit normalization and spectral whitening result on the loss of waveform details and that the phase auto-correlation, which is amplitude unbiased, seems to be more sensitive and robust for our analysis of a small earthquake swarm. The analysis of 6 months of data using cross-correlations detect clear medium changes soon after the main event while the auto-correlations detect changes essentially after 1 month. It could be explained by fluid pressure redistribution which can be initiated by hydromechanical changes and opened path ways to shallower depth levels due to later occurring earthquakes. In the Mid-Atlantic Ridge study, we investigate structural changes associated with a mb 4.9 earthquake in the region of the Saint Paul transform fault. The data have been recorded by a single broadband seismic station located at less than 200 km from the Mid-Atlantic ridge. The results of the phase auto-correlation for a 5-month period, show a strong co-seismic medium change followed by a relatively fast post-seismic recovery. This medium change is likely related to the damages caused by the earthquake’s ground shaking. The healing process (filling of the new cracks) that lasted 60 days can be decomposed in two phases, a fast recovery (70% in ~30 days) in the early post-seismic stage and a relatively slow recovery later (30% in ~30 days). In the coda wave interferometry study, we monitor temporal changes of the subsurface caused by the small intraplate earthquake swarm mentioned previously. The method was first validated with synthetics data. We were able to detect a change of 2.5% in the source position and a 15% decrease of the scatterers’ amount. Then, from the real data, we observed a rapid decorrelation of the seismic coda after the mR 3.7 seismic event. This indicates a rapid change of the subsurface in the fault’s region induced by the earthquake.
Resumo:
This thesis presents and discusses the results of ambient seismic noise correlation for two different environments: intraplate and Mid-Atlantic Ridge. The coda wave interferometry method has also been tested for the intraplate data. Ambient noise correlation is a method that allows to retrieve the structural response between two receivers from ambient noise records, as if one of the station was a virtual source. It has been largely used in seismology to image the subsurface and to monitor structural changes associated mostly with volcanic eruptions and large earthquakes. In the intraplate study, we were able to detect localized structural changes related to a small earthquake swarm, which main event is mR 3.7, North-East of Brazil. We also showed that the 1-bit normalization and spectral whitening result on the loss of waveform details and that the phase auto-correlation, which is amplitude unbiased, seems to be more sensitive and robust for our analysis of a small earthquake swarm. The analysis of 6 months of data using cross-correlations detect clear medium changes soon after the main event while the auto-correlations detect changes essentially after 1 month. It could be explained by fluid pressure redistribution which can be initiated by hydromechanical changes and opened path ways to shallower depth levels due to later occurring earthquakes. In the Mid-Atlantic Ridge study, we investigate structural changes associated with a mb 4.9 earthquake in the region of the Saint Paul transform fault. The data have been recorded by a single broadband seismic station located at less than 200 km from the Mid-Atlantic ridge. The results of the phase auto-correlation for a 5-month period, show a strong co-seismic medium change followed by a relatively fast post-seismic recovery. This medium change is likely related to the damages caused by the earthquake’s ground shaking. The healing process (filling of the new cracks) that lasted 60 days can be decomposed in two phases, a fast recovery (70% in ~30 days) in the early post-seismic stage and a relatively slow recovery later (30% in ~30 days). In the coda wave interferometry study, we monitor temporal changes of the subsurface caused by the small intraplate earthquake swarm mentioned previously. The method was first validated with synthetics data. We were able to detect a change of 2.5% in the source position and a 15% decrease of the scatterers’ amount. Then, from the real data, we observed a rapid decorrelation of the seismic coda after the mR 3.7 seismic event. This indicates a rapid change of the subsurface in the fault’s region induced by the earthquake.
Resumo:
The uncontrolled growth of most Brazilian cities is not accompanied by the development of urban infrastructure. With increasing soil sealing, runoff and decreased infiltration volume, impacts on water resources and on population of the areas affected by urban growth are inevitable. This study aims to evaluate the use and occupation of a watershed and analyze the drainage system in order to control the impact using tools to integrate urban development with the drainage of rainwater in an important watershed in the Natal City, Rio Grande do Norte State. The study involved the characterization of the basin XII.4 on the land use and occupation, for the years 2005 and 2014. With the application of SWMM model was possible to analyze the impacts caused by the urbanization process in the existing drainage system, showing the two years analyzed have their areas very close to percentage saturation of impervious areas. Although the region is still predominantly single family residential, suffers increasing verticalization of mainly commercial buildings. The drainage system is inefficient for the area's needs by the year 2005. The drainage system was also tested for four variations of land use by developing scenarios. Scenario 1 is related to the year 2014, considered current. Scenario 2 was adopted the maximum rate of 80% for land use, allowed for the Natal City. Scenario 3 gives the critical condition of land use, with the area 100% impervious. Scenario 4 is applied to the existence of LID (Low Impact Device). The scenarios analysis showed that all indicate deficiency at some point of the drainage system as a result of the high degree of occupation of the area that generate higher flows than the initial drainage system capacity. With the study it became clear that the adoption of non-structural tools are effective in reducing flooding and improving the drainage system capacity.
Resumo:
The uncontrolled growth of most Brazilian cities is not accompanied by the development of urban infrastructure. With increasing soil sealing, runoff and decreased infiltration volume, impacts on water resources and on population of the areas affected by urban growth are inevitable. This study aims to evaluate the use and occupation of a watershed and analyze the drainage system in order to control the impact using tools to integrate urban development with the drainage of rainwater in an important watershed in the Natal City, Rio Grande do Norte State. The study involved the characterization of the basin XII.4 on the land use and occupation, for the years 2005 and 2014. With the application of SWMM model was possible to analyze the impacts caused by the urbanization process in the existing drainage system, showing the two years analyzed have their areas very close to percentage saturation of impervious areas. Although the region is still predominantly single family residential, suffers increasing verticalization of mainly commercial buildings. The drainage system is inefficient for the area's needs by the year 2005. The drainage system was also tested for four variations of land use by developing scenarios. Scenario 1 is related to the year 2014, considered current. Scenario 2 was adopted the maximum rate of 80% for land use, allowed for the Natal City. Scenario 3 gives the critical condition of land use, with the area 100% impervious. Scenario 4 is applied to the existence of LID (Low Impact Device). The scenarios analysis showed that all indicate deficiency at some point of the drainage system as a result of the high degree of occupation of the area that generate higher flows than the initial drainage system capacity. With the study it became clear that the adoption of non-structural tools are effective in reducing flooding and improving the drainage system capacity.