137 resultados para prova sperimentalestruttura prefabbricatacollegamento trve-pilastrocemento armato
Resumo:
The marble and granite waste come from the process of mining of those ornamental rocks for use in the building industry. Brazil is one of the largest producers of blocks or finished products of ornamental rocks, extracting about 5.2 tons / year. The largest national producers are the states of Espírito Santo, Minas Gerais and Bahia which account for 80% of the Brazilian production. However, the waste total amount during processing of these blocks reaches 40% of the total. The use of the waste produced by this industry in white ceramics could be a form of disposition, because these materials, are thrownasa mud directly at decantation ponds, wastelands or in rivers, without any treatment. The present work has as main purpose to study the influence that reject of the ornamental rocks on the physical and mechanical properties of white ceramics. X-Ray characterizations of raw materials by were performed X-Ray fluorescence, X-Ray diffraction, granulometric, thermogravimetric and thermodiferencial analysis, five formulations were made (0, 10, 20, 30, 40% in granite weight) wich were burned at three temperatures: 1100°C, 1150°C and 1200ºC with 60 minutes of sorling time. After sintering, the samples were submitted to different analyser absorption of water, linear retraction, apparent porosity, apparent specific mass, flexival stronght, and scanning were obtained microscopy. Compatible technological properties within the limits demanded for the production of porcelainized stoneware
Resumo:
Present work proposed to map and features the wear mechanisms of structural polymers of engineering derived of the sliding contact with a metallic cylindrical spindle submitted to eccentricity due to fluctuations in it is mass and geometric centers. For this it was projected and makes an experimental apparatus from balancing machine where the cylindrical counterbody was supported in two bearings and the polymeric coupon was situated in a holder with freedom of displacement along counterbody. Thus, the experimental tests were standardized using two position of the two bearings (Fixed or Free) and seven different positions along the counterbody, that permit print different conditions to the stiffness from system. Others parameters as applied normal load, sliding velocity and distance were fixed. In this investigation it was used as coupon two structural polymers of wide quotidian use, PTFE (polytetrafluroethylene) and PEEK (poly-ether-ether-ketone) and the AISI 4140 alloy steel as counterbody. Polymeric materials were characterized by thermal analysis (thermogravimetric, differential scanning calorimetry and dynamic-mechanical), hardness and rays-X diffractometry. While the metallic material was submitted at hardness, mechanical resistance tests and metallographic analysis. During the tribological tests were recorded the heating response with thermometers, yonder overall velocity vibration (VGV) and the acceleration using accelerometers. After tests the wear surface of the coupons were analyzed using a Scanning Electronic Microscopy (SEM) to morphological analysis and spectroscopy EDS to microanalysis. Moreover the roughness of the counterbody was characterized before and after the tribological tests. It was observed that the tribological response of the polymers were different in function of their distinct molecular structure. It were identified the predominant wear mechanisms in each polymer. The VGV of the PTFE was smaller than PEEK, in the condition of minimum stiffness, in function of the higher loss coefficient of that polymer. Wear rate of the PTFE was more of a magnitude order higher than PEEK. With the results was possible developed a correlation between the wear rate and parameter (E/ρ)1/2 (Young modulus, E, density, ρ), proportional at longitudinal elastic wave velocity in the material.
Resumo:
The production of roof tiles in the state of Rio Grande do Norte accounts for around 60% of the total of ceramic pieces produced. There is a need for investment to improve quality and productivity, thereby promoting technological innovations. Accordingly, the aim of this study is to determine the effect of kaolin, potassium feldspar and quartz in two standard formulations, as well as the effect of sintering temperature on the technological properties of linear firing shrinkage, water absorption and bending rupture stress, by fitting the statistical model and using multiple linear regression to assess the relationship between technological properties and independent variables. The raw materials were characterized using the following techniques: X-ray fluorescence (XRF), X-ray diffraction (XRF), rational analysis (RA), differential thermal analysis (DTA) and granulometric analysis (GA). The test specimens were compacted by uniaxial pressure (25 MPa), dried in a stove at 110 ºC for 24 hours and sinterized at 850 ºC, 950 ºC and 1050 ºC and held isothermal for 30 minutes. The results obtained indicate that the addition of kaolin to two standard formulations (M and R) promoted a reduction in water absorption values and an increase in bending rupture stress values. The sintering temperatures for group M that resulted in the lowest linear firing shrinkage and water absorption values were 850 ºC and 950 ºC, respectively, and the highest bending rupture stress values were reached at a temperature of 950 ºC. In the case of group R, the sintering temperature that obtained the lowest water absorption and linear firing shrinkage values was 850 ºC, and the highest bending rupture stress values were attained at a temperature of 1050 ºC. This work explains the statistical approach used to fit the model that describes the relationship between the technological properties and percentage of kaolin, quartz and feldspar, as well as the models that enable predictions, provided that the lower and upper limits of the percentage of clay minerals, flux and quartz used in this study are respected. Statistica 6 software was used and results were obtained by stepwise forward regression
Resumo:
This work has for objective study compared the characteristics and technological properties of ceramic bodies from the region of Seridó-RN. The region under study has identified 23 cities where they were 80 ceramics industries. To define the universe of search, there was a survey of pottery that are part of APL Seridó next to the IEL. The characteristics and operating conditions of ceramics industries of the region were identified through a socio-economic questionnaire applied locally, which addressed issues such as: profiles of companies, production process etc. The analysis of information collected from 24 companies identified in seven cities shows that the vast majority of industries is small, with family structure, obsolete equipment and labo, little qualified. Most of the pottery works with low technical knowledge, poor control of the production process and product technology. The raw collected were submitted to analysis of X ray diffraction, chemical composition, termical analysis, particle size distribution and plasticity. Then were produced five formulations and made by uniaxial pressure at 25 MPa for firing in temperatures varying from 850 to 1050 °C. The firing technological properties evaluated were: mass loss to fire, lineal shrinkage, apparent density, apparent porosity, water absorption and flexural strength (3 points). The results indicated that the raw materials from the region have significant similarities in the composition chemical and mineralogical. Furthermore, it indicates the possibility of the use of cycles of firing faster and efficient than the current, limited to some clay mass burning of certain conditions
Resumo:
In this study were conducted experimental procedures for determination of variation of the expandability of rigid polyurethane foam (PUR) from a natural oil polyol (NOP), specifically the Castor oil plant, Ricinus communis, pure and additions of the vermiculite in phase dispersed in different percentage within a range from 0% to 20%, mass replacement. From the information acquired, were defined the parameters for production of bodies of test, plates obtained through controlled expansion, with the final volume fixed. Initially, the plates were subjected to thermal performance tests and evaluated the temperature profiles, to later be extracted samples duly prepared in accordance with the conditions required for each test. Was proceeded then the measurement of the coefficient of thermal conductivity, volumetric capacity heat and thermal diffusivity. The findings values were compared with the results obtained in the tests of thermal performance, contributing to validation of the same. Ultimately, it was investigated the influence that changes in physical-chemical structure of the material had exerted on the variation of thermophysical quantities through gas pycnometry, scanning electron microscopy (SEM) combined with energy dispersive X-ray fluorescence spectroscopy (EDXRF), infrared spectroscopy using Fourier transform (FTIR), thermogravimetric analysis (TGA) and differential thermal analysis (DTA). Based on the results obtained was possible to demonstrate that all load percentage analyzed promoted an increase in the potential expansion (PE) of the resin. In production of the plates, the composites with density near at the free expansion presented high contraction during the cure, being the of higher density adopted as definitive standard. In the thermal performance tests, the heating and cooling curves of the different composites had presented symmetry and values very close for lines of the temperature. The results obtained for the thermophysical properties of composites, showed little difference in respect of pure foam. The percentage of open pores and irregularities in the morphology of the composites were proportionate to the increment of vermiculite. In the interaction between the matrix and dispersed phase, there were no chemical transformations in the region of interface and new compounds were not generated. The composites of PUR-NOP and vermiculite presented thermal insulating properties near the foam pure and percentage significantly less plastic in its composition, to the formulation with 10% of load
Resumo:
The State of Rio Grande do Norte, Brazil, possess major deposits of feldspar, clay, kaolin and talc, all raw materials used in the production of porcelainized stoneware tiles. Conversely, state industries manufacture only low added value red ceramics. Porcelainized stoneware tiles is one of the noblest ceramics, depicting low water absorption (typically below of 0,5%), in addition to excellent staining resistance and mechanical strength. The present work aims at investigating the potential of local raw materials for the production of porcelainized stoneware tiles. To that end, these materials were characterized by X-ray fluorescence, X-ray diffraction, particle size analysis, thermal gravimetric analysis and thermal differential analysis. Admixtures containing different compositions were prepared and fired at three temperatures, 1150, 1200 and 1250°C for 30 min. After firing, tests samples were characterized by water absorption tests, linear retraction, dilatometric analysis, apparent porosity, apparent specific mass, flexural strength, and microstructural analysis by XRD and SEM. The results revealed that ceramics with porcelainized stoneware tiles characteristics could be produced from raw materials originated in the State of Rio Grande do Norte
Resumo:
Traditional ceramics have an important role in the economy of Rio Grande do Norte. The local industries manufacture over 50 million shingles a month, corresponding to 60% of their overall production. As a result of processing flaws, roughly 20% of the production must be discarded, since little or no use has been envisaged for such fired components. Therefore, the use of this kind of residue, especially in the composition of other ceramic materials, comes as an interesting option from the economical and environmental point of view. In this scenario, the objective of the present study was to assess the effect of the addition of fired shingle waste in the composition of porcelainized stoneware tiles. To that end, two porcelainized stoneware tiles compositions were initially prepared. Subsequently, contents from 10 to 30% of roofing tiles chamote were added to each one of them. All raw materials and grog were characterized by FRX, XRD, and thermal analysis. The ceramics were fired using natural gas for 30 min at different temperatures, i.e. 1150, 1200 and 1250ºC, and fully characterized. The addition of roofing tiles chamote resulted in composition with superior properties compared to additive-free compositions. Porcelainized stoneware tiles products that fulfill required standards for practical applications were achieved
Resumo:
The types of products manufactured calcium silicate blocks are very diversified in its characteristics. They include accessory bricks, blocks, products in dense material, with or without reinforcements of hardware, great units in cellular material, and thermal insulating products. The elements calcium silicate are of great use in the prefabricated construction, being formed for dense masses and hardened by autoclaving. This work has for objective develop formulations that make possible the obtaining of calcium silicate blocks with characteristics that correspond the specifications technical, in the State of the Rio Grande of the North, in finality of obtaining technical viability for use in the civil construction. The work studied the availability raw materials from convenient for the production of calcium silicate blocks, and the effect of variations of the productive process on the developed products. The studied raw materials were: the quartz sand from the city of São Gonçalo do Amarante/RN, and two lime, a hydrated lime and a pure lime from the city of Governador Dix-Sept Rosado/RN. The raw materials collected were submitted a testes to particle size distribution, fluorescence of X rays, diffraction of X rays. Then were produced 8 formulations and made body-of-test by uniaxial pressing at 36 MPa, and cured for 7 hours at about 18 kgf/cm2 pressing and temperature of approximately 180 °C. The cure technological properties evaluated were: lineal shrinkage, apparent density, apparent porosity, water absorption, modulus of rupture flexural (3 points), resistance compression, phase analysis (XRD) and micromorphological analysis (SEM). From the results presented the technological properties, was possible say that utilization of hydrated lime becomes more viable its utilization in mass limestone silica, for manufacture of calcium silicate blocks
Resumo:
The State Bahia, Brazil, presents different geological sites it with a very expressive variety minerals. It is situated among the very important States which produces minerals for industries, such as pointed aggregate, ornamentals stones and ceramics raw materials. Nowadays only four companies producting ceramics tiles. Porcelainized stoneware tiles is one of the noblest ceramics, depicting low water absorption (typically below of 0,5%), in addition to excellent staining resistance and mechanical strength. The present work aims at investigating the potential of local raw materials for the production of porcelainized stoneware tiles. For this purpose, these materials were characterized by X-ray fluorescence, X-ray diffraction, particle size analysis, thermal gravimetric analysis, thermal differential analysis and dilatometric analysis. Admixtures containing different compositions were prepared and fired at four temperatures, 1100 ºC, 1150 ºC, 1200 ºC and 1250 ºC with isotherm for 60 minute and heathing rate of 5 oC/min. After firing the samples, they were characterized by water absorption tests, linear retraction, analysis, apparent porosity, apparent specific mass, flexural strength, and microstructural analysis by X-ray diffraction and scanning electron microscopy . The results revealed three ceramics with porcelainized stoneware tiles characteristics and porcelain tile will be produce from raw materials originated in the State of Bahia
Resumo:
Low cost seals are made of NBR, Nitrile Butadiene Rubber, a family of unsaturated copolymers that is higher resistant to oils the more content of nitrile have in its composition, although lower its flexibility. In Petroleum Engineering, NBR seal wear can cause fluid leakage and environmental damages, promoting an increasing demand for academic knowledge about polymeric materials candidate to seals submitted to sliding contacts to metal surfaces. This investigation aimed to evaluate tribological responses of a commercial NBR, hardness 73 ± 5 Sh A, polytetrafluoroethylene (PTFE), hardness 60 ± 4 HRE and PTFE with graphite, 68 ± 6 HRE. The testings were performed on a sliding tribometer conceived to explore the tribological performance of stationary polymer plane coupons submitted to rotational cylinder contact surface of steel AISI 52100, 20 ± 1 HRC Hardness, under dry and lubricated (oil SAE 15W40) conditions. After screening testings, the normal load, relative velocity and sliding distance were 3.15 N, 0.8 m/s and 3.2 km, respectively. The temperatures were collected over distances of 3.0±0.5 mm and 750±50 mm far from the contact to evaluate the heating in this referential zone due to contact sliding friction by two thermocouples K type. The polymers were characterized through Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA). The wear mechanisms of the polymer surfaces were analyzed by Scanning Electron Microscopy (SEM) and EDS (Energy-Dispersive X-ray Spectroscopy). NBR referred to the higher values of heating, suggesting higher sliding friction. PTFE and PTFE with graphite showed lower heating, attributed to the delamination mechanism
Resumo:
The limits to inform is about the character stico of basic, quimica, mineralogical and mechaniques of matlaughed material used in the manufacturing process the product certified in economic region the Cariri, specifically in the city of Crato, Ceará state, motivated the development of this work, since in this region the exist ing economic context that a general appear as important in the production chains. Were made twentyfive soils-test specimen collection and the study was performed to differentiate the mat laugh materials of variaveis processing of mathing raw materials in the factory The product mica monkeys by extrusion and pressing. The results were obtained ap s as analyzes: grain size, index of plasticity, fluoresce incidence X-ray difration the X-ray, and analyzes thermicals and properties technological. through s of curves gresifica returned to was a comparison between the retro the linear, absorb to water, porosity and bulk density. the results show that the excellent distribution and character acceptable available for the processing of the structure color dark red. needing, therefore, of the mixture of a less plastic clay with thick granulation, that works as plasticity reducer. In spite of the different resignation forms for prensagem and extrusion, the characteristics of absorption of water and rupture tension the flexing was shown inside of the patterns of ABNT
Resumo:
This study aimed to investigate the use of cane sugar ashes from small-scale stills of Eunápolis region, state of Bahia, in pottery mass that can be developed as porcelain stoneware. Bahia is the second largest producer of rum distillery in Brazil. In the production of rum is produced residue called bagasse, which is used to generate electricity in Power plants and in the distillery itself, generating ashes as residue, which is played in nature, causing environmental damage. We studied 5 (five) formulations of 0% 10% 20%, 30% and 40% by weight of the ash, without ignition and 3 (three) formulations of 10%, 20% and 30% with gray ash temperature of 1250ºC. The formulation at 0% by weight of ash was used for a comparison between the traditional mass of porcelain stoneware and the masses with the addition of ash calcined, replacing feldspar. The percentage by weight of kaolin and of Clay was kept the same, 30%, and all raw materials were derived from the state of Bahia. The samples were made in uniaxial array with dimensions of (60 x 20 x 5) mm and compressed to a pressure of 45 MPa. Assays were performed to characterize the raw by X-ray fluorescence, X-ray diffraction, ATD and ATG and Dilatometric analysis. The samples were sintered at temperatures of 1100°C, 1150°C, 1200°C and 1250°C, for the specimens with the ashes without ash and 1150° C and 1200° C for specimens with the gray level of calcined 60 minutes. and then we made a cooling ramp with the same rate of warming until reach ambient temperature. The sintered bodies were characterized by water absorption, porosity, linear shrinkage, bending strength and XRD of the fracture surface and the results analyzed. It was proven, after results of tests performed, that it is possible to use the ash residue of sugar cane bagasse on ceramic coating with the addition of up to 10% wt of the residue ash
Resumo:
In recent years there has been a significant growth in technologies that modify implant surfaces, reducing healing time and allowing their successful use in areas with low bone density. One of the most widely used techniques is plasma nitration, applied with excellent results in titanium and its alloys, with greater frequency in the manufacture of hip, ankle and shoulder implants. However, its use in dental implants is very limited due to high process temperatures (between 700 C o and 800 C o ), resulting in distortions in these geometrically complex and highly precise components. The aim of the present study is to assess osseointegration and mechanical strength of grade II nitrided titanium samples, through configuration of hollow cathode discharge. Moreover, new formulations are proposed to determine the optimum structural topology of the dental implant under study, in order to perfect its shape, make it efficient, competitive and with high definition. In the nitriding process, the samples were treated at a temperature of 450 C o and pressure of 150 Pa , during 1 hour of treatment. This condition was selected because it obtains the best wettability results in previous studies, where different pressure, temperature and time conditions were systematized. The samples were characterized by X-ray diffraction, scanning electron microscope, roughness, microhardness and wettability. Biomechanical fatigue tests were then conducted. Finally, a formulation using the three dimensional structural topology optimization method was proposed, in conjunction with an hadaptive refinement process. The results showed that plasma nitriding, using the hollow cathode discharge technique, caused changes in the surface texture of test specimens, increases surface roughness, wettability and microhardness when compared to the untreated sample. In the biomechanical fatigue test, the treated implant showed no flaws, after five million cycles, at a maximum fatigue load of 84.46 N. The results of the topological optimization process showed well-defined optimized layouts of the dental implant, with a clear distribution of material and a defined edge
Resumo:
Brazil is the world s leading coffee producer. In 2008, 45.99 million of 60 kg bags of benefited coffee were produced. In the process of improvement 50% is grain and 50% is husk, thus, 1.38 million tons of coffee husk are produced annually. The husk is used as combustible in the drying and improvement ovens in the coffee farms, generating ash as residue. These ashes contain a high concentration of alkaline metals and earth metals, mainly K2O and CaO. This work studies the use of this residue in the ceramic tiles industry, as fluxing agents in substitution to the feldspar. Ten mixtures with equal ratios of clay and kaolin, proceeding from Bahia and the residue (varying from 30 to 5%) were defined and produced in uniaxial tool die of 60x20mm with approximately 5 mm of thickness and 45MPa compacting pressure. The samples were fired in four different temperatures: 1100 °C, 1150 °C, 1185 °C and 1200 °C during 60 minutes and characterized by means of X-ray fluorescence, X-ray diffraction, gravimetric thermal analysis and differential thermal analysis. The results of water absorption, apparent porosity, linear shrinkage, XRD, dilatometry, flexural strength and SEM were also analysed. The test specimen with addition of 10% of ash fired in 1200 °C resulted in 0.18% water absorption and 40.77 MPa flexural strength, being classified as porcelain stoneware tiles according to ABNT, UNI and ISO norms
Resumo:
This work presents research into the addition of chamotte obtained from the ceramic isolator of unusable spark plugs in formulations of material mixes for standard white ceramic material with aluminum oxide bases. After the physical chemical characterization of the primary materials, standard clay and the chamotte, three mixtures were prepared with concentrations of 10, 20 and 30% chamotte by weight in relation to the standard clay. The test samples underwent heating at a rate of 30 0C/min to levels that included 100o , 200o , 300o, 400o, 500o e 600 0C and also we submitted to three distinct burn temperatures: 1450o, 1500o e 1550 0C, remaining at these temperatures for 2 hour periods. After sintering, the physical and microstructural properties of the different test samples were measured and analyzed. The results show that the materials obtained present good technical properties and that the chamotte can be reutilized as an additive in the production of white ceramic material with an aluminum oxide base