96 resultados para Vigas : Concreto armado : Reforço : Fibra de carbono


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, three composites with distinct reinforcements (polyester, modal e polyester + modal), all if a unsaturated orthophthalic polyester resin as matrix were used, in order to conduct a comparative study by mechanical tests and water absorption. The fibre mats were prepared in a mat preparatory by immersion developed in the Textile Engineering Laboratory. The composites were manufactured using a closed mould process by compression using an unsaturated orthophthalic polyester resin as matrix and 1% MEK (methyl ethyl ketone peroxide) as an initiator. In each composite twelve samples with the dimensions of 150x25x3 mm were cut randomly for the mechanical analysis (tension x extension, three points bending and water absorption and Scanning Electron Micsroscopy). The mechanical tests were carried out in the Laboratório de Metais e Ensaios Mecânicos UFRN . All the analyses were carried out according to the ASTM norms. The resultant samples from the mechanical analysis were subjected for the Scanning Electron Microscopy analysis. Based on the results obtained, it was observed that the reinforced composite with two fibres (modal + polyester) presented better results in comparison to the other two composites both in the tension/extension as well on the three point bending tests. In the water absorption test, it was possible to observe an equilibrium in the water absorption by the modal and polyester composite, due to the union of the two fibres. In the SEM images, the regions of rupture in the composites as well as the adsorption between the fiber and the matrix could be observed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concern for the environment and the exploitation of natural resources has motivated the development of research in lignocellulosic materials, mainly from plant fibers. The major attraction of these materials include the fact that the fibers are biodegradable, they are a renewable natural resource, low cost and they usually produce less wear on equipment manufacturing when compared with synthetic fibers. Its applications are focused on the areas of technology, including automotive, aerospace, marine, civil, among others, due to the advantageous use in economic and ecological terms. Therefore, this study aims to characterize and analyze the properties of plant fiber macambira (bromelia laciniosa), which were obtained in the municipality of Ielmo Marino, in the state of Rio Grande do Norte, located in the region of the Wasteland Potiguar. The characterization of the fiber is given by SEM analysis, tensile test, TG, FTIR, chemical analysis, in addition to obtaining his title and density. The results showed that the extraction of the fibers, only 0.5% of the material is converted into fibers. The results for title and density were satisfactory when compared with other fibers of the same nature. Its structure is composed of microfibrils and its surface is roughened. The cross section has a non-uniform geometry, therefore, it is understood that its diameter is variable along the entire fiber. Values for tensile strength were lower than those of sisal fibers and curauá. The degradation temperature remained equivalent to the degradation temperatures of other vegetable fibers. In FTIR analysis showed that the heat treatment may be an alternative to making the fiber hydrophobic, since, at high temperature can remove the hemicellulose layer, responsible for moisture absorption. Its chemical constitution is endowed with elements of polar nature, so their moisture is around 8.5% which is equivalent to the percentage of moisture content of hydrophilic fibers. It can be concluded that the fiber macambira stands as an alternative materials from renewable sources and depending on the actual application and purpose, it may achieve satisfactory results

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A batch of eighty-four coupons of low carbon steel were investigated at laboratory conditions under a corrosive, cavitative-corrosive (CO2) and corrosive-erosive (SiO2 + CO2) in an aqueous salt solution and two levels of temperature. The following measurements were made on Vickers (HV0,05, HV0,10, HV0,20) Microhardness tests at three levels of subsurface layer. A turbulent flow collided on the cylindrical sample, with and without mechanical stirring and gas bubbling, with and without fluid contamination by solid particles of SiO2, at two temperatures. Surface Roughness and Waviness, under two conditions "as received, after machining" and "after worn out", as well as gravimetric and electrochemical parameter were measured on the two opposite generatrices of each cylindrical sample, on the flow upstream (0°) and downstream (180°) by Profilometry, Mass Variation and Linear Polarization Resistance (LPR). The results of the Microhardness and Surface Texture of all coupons were subjected to statistical comparison, using the software Statgraphics® Centurion XVI, 95% statistical certainty, and significant differences were observed in some arrays of measurements. The corrosive wear rate measured by LPR and mass variation shown to be sensitive to the presence of bubbles and hydrodynamic fluctuations inside the cell, considering the temperature and contamination of corrosive fluid by solid particles. The main results of visual inspection relative to some topologies of the surface damages involving different mechanisms that were seen to give explanation for some fluctuations in wear rates of the steel experimentally investigated

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Materials known as technical textiles can be defined as structures designed and developed to meet specific functional requirements of various industry sectors, which is the case in automotive and aerospace industries, and other specific applications. Therefore, the purpose of this work presents the development and manufacture of polymer composite with isophthalic polyester resin. The reinforcement of the composite structure is a technical textile fabric made from high performance fibers, aramid (Kevlar 49) and glass fiber E. The fabrics are manufactured by the same method, with the aim of improving the tensile strength of the resulting polymer composite material. The fabrics, we developed some low grammage technical textile structures in laboratory scale and differentiated-composition type aramid (100%), hybrid 1 aramid fiber / glass (65/35%) and hybrid 2 aramid fiber / glass (85/15% ) for use as a reinforcing element in composite materials with unsaturated isophthalic polyester matrix. The polymer composites produced were tested in uniaxial tensile fracture surface and it´s evaluated by SEM. The purpose of this work characterize the performance of polymer composites prepared, identifying changes and based on resistance to strain corresponding to the mechanical behavior. The objectives are to verify the capability of using this reinforcement structure, along with the use of high performance fibers and resin in terms of workability and mechanical strength; verify the adherence of the fiber to the matrix and the fracture surface by electron microscopy scanning and determination of tensile strength by tensile test. The results indicate that, in a comparative study to the response of uniaxial tensile test for tensile strength of the composites and the efficiency of the low percentage of reinforcement element, being a technical textile fabric structure that features characteristic of lightness and low weight added in polymer composites

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The composites manufactured with long fibres aligned in a single direction, and overlay has been shown to have better performance than the short fibers randomly distributed. In particular, the lignocellulosic fibers extracted from the sisal leaves, used in conjunction with the epoxy resin has attracted the attention of many researchers because the final properties of the system formed. In this work composites based on epoxy resin reinforced with sisal fibers were manufactured. The sisal fibres were treated with an alkaline solution of 0.06 mol/l NaOH. The treated, and untreated fibres were subjected to tension x extension tests. The composites were manufactured in the "Lossy" mold with the specifications of the samples to be produced (300x20x4 mm). The tension tests were carried out in accordance with the ASTM standards 3039 (for the composite aligned in a single direction) and ASTM D5573 (for composites in overlay), three point bending tests were performed according to ASTM D790. Analyzing the results of the tests of tension and three point bending tests, it was observed that the composites with the configuration of overlapping had the better elastic module in both tests. As to the maximum resistance to tension, the best result was the composites aligned in a single direction. Tests of absorption of water and micrographs are in progress

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The need to build durable structures and resistant to harsh environments enabled the development of high strength concrete, these activities generate a high cement consumption, which implies factor in CO2 emissions. Often the desired strength is not achieved using only the cement composition. This study aims to evaluate the influence of pozzolans with the addition of metakaolin on the physical mechanics of high strength concrete comparing them with the standard formulation. Assays were performed to characterize the aggregates according to NBR 7211, evaluation of cement and coarse aggregate through the trials of petrography (NBR 15577-3/08) and alkali-aggregate reaction (NBR 15577-05/08). Specimens were fabricated according to NBR 5738-1/04 with additions of 0%, 4%, 6%, 8% and 10% of metakaolin for cement mortars CP V in the formulations. For evaluation of the concrete hardened in fresh state and scattering assays were performed and compressive strength in accordance with the NBR 7223/1992 and NBR 5739-8/94 respectively. The results of the characterization of aggregates showed good characteristics regarding size analysis and petrography, as well as potentially innocuous as the alkali-aggregate reaction. As to the test of resistance to compression, all the formulations with the addition of metakaolin showed higher value at 28 days of disruption compared with the standard formulation. These results present an alternative to reduce CO2 emissions, and improvements in the quality and durability of concrete, because the fine particle size of metakaolin provides an optimal compression of the mass directly influencing the strength and rheology of the dough

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At the cashew nut processing industry it is often the generation of wastewaters containing high content of toxic organic compounds. The presence of these compounds is due mainly to the so called liquid of the cashew nut (CNSL). CNSL, as it is commercially known in Brazil, is the liquid of the cashew nut. It looks like an oil with dark brown color, viscous and presents a high toxicity index due to the chemical composition, i.e. phenol compounds, such as anacardic acid, cardol, 2-methyl cardol and monophenol (cardanol). These compounds are bio resistant to the conventional treatments. Furthermore, the corresponding wastewaters present high content of TOC (total organic carbon). Therefore due to the high degree of toxicity it is very important to study and develop treatments of these wastewaters before discharge to the environmental. This research aims to decompose these compounds using advanced oxidative processes (AOP) based on the photo-Fenton system. The advantage of this system is the fast and non-selective oxidation promoted by the hydroxyl radicals (●OH), that is under determined conditions can totally convert the organic pollutants to CO2 and H2O. In order to evaluate the decomposition of the organic charge system samples of the real wastewater od a processing cashew nut industry were taken. This industry was located at the country of the state of Rio Grande do Norte. The experiments were carried out with a photochemical annular reactor equipped with UV (ultra violet) lamp. Based on preliminary experiments, a Doehlert experimental design was defined to optimize the concentrations of H2O2 and Fe(II) with a total of 13 runs. The experimental conditions were set to pH equal to 3 and temperature of 30°C. The power of the lamps applied was 80W, 125W and 250W. To evaluate the decomposition rate measures of the TOC were accomplished during 4 hours of experiment. According to the results, the organic removal obtained in terms of TOC was 80% minimum and 95% maximum. Furthermore, it was gotten a minimum time of 49 minutes for the removal of 30% of the initial TOC. Based on the obtained experimental results, the photo-Fenton system presents a very satisfactory performance as a complementary treatment of the wastewater studied

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluates the biosurfactants production from cassava wastewater, an agro industrial residue, to be used as carbon source. Using a factorial design 24-1 (half fraction), 10 tests were performed using Pseudomonas aeruginosa AP029/GVII-A in submerged batch cultivation in rotating incubator (shaker). The influence of factors (temperature, agitation, aeration ratio and concentration of cultivation medium) at two different levels for the synthesis of the biosurfactant. Samples were collected throughout the cultivation by 132 hours of fermentation were completed. The best outcome was intended by following production through substrate consumption, dry matter, reduction of surface tension (ring method) and emulsification index. The kinetics of microorganism was assessed for the carbon source used. The results showed that the cassava wastewater is a well assimilable substrate for the production of biotensoactive, reaching 91 % of consumption by the micro-organism under study. The growth temperature was found to be one of the leading factors in the synthesis of the metabolite, followed by aeration and also due to the agitation. The best results showed a 30 % reduction in surface tension (% RTS) for the environment, reaching values of 30 mN/m; 3.0 g /L of biomass and emulsifying index greater than 65 %. The metabolite synthesized still remained stable for different salt concentrations (1, 5 and 10 % w/ v) and alkaline pH (8-10).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last decade, biological purification of gaseous waste has become an important alternative to many conventional methods of exhaust air treatment. More recently, biofiltration has proved to be an effective and inexpensive method for the treatment of air contaminated with volatile organic compounds (VOCs). A biofilter consists in a reactor packed with a porous solid bed material, where the microorganisms are fixed. During the biofiltration process, polluted air is transported through the biofilter medium where the contaminant is degraded. Within the biofilm, the pollutants in the waste gases are energy and carbon sources for microbial metabolism and are transformed into CO2, water and biomass. The bed material should be characterized by satisfactory mechanical and physical properties as structure, void fraction, specific area and flow resistance. The aim of this research was the biofilter construction and study of the biological degradation of ethanol and toluene, as well as the modeling of the process. Luffa cylindrica is a brazilian fiber that was used as the filtering material of the present work. The parameters and conditions studied were: composition of nutrients solution; effect of microflorae strains, namely Pseudomanas putida and Rhodococcus rhodochrous; waste gas composition; air flow rate; and inlet load of VOCs. The biofilter operated in diffusion regime and the best results for remotion capacity were obtained when a microorganisms consortion of Pseudomanas putida and Rhodococcus rhodochrous,were used, with a gas flow rate of 1 m3.h-1 and molar ratio nitrogene/phosphore N/P=2 in the nutrients solution. The maximum remotion capacity for ethanol was around 90 g.m-3.h-1 and 50 g.m-3.h-1 to toluene. It was proved that toluene has inhibitory effect on the ethanol remotion When the two VOCs were present in the same waste gas, there was a decrease of 40% in ethanol remotion capacity. Luffa cylindrica does not present considerable pressure drop. Ottengraf and van Lith models were used to represent the results obtained for ethanol and toluene, respectively. The application of the transient model indicated a satisfactory approximation between the experimental results obtained for ethanol and toluene vapors biofiltration and the ones predicted it

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The municipal district of Equador-RN is located in an area of great amounts of ores, being your main economical activity the extraction and the kaolin improvement. The main originating from environmental problem that activity is the amount of generated residue, about 70% of the extracted kaolin. The residues are simply piled up in lands of the improvement companies, occupying like this a large area and causing impact in the existent flora. When dry, the residues transform powdered and for the action of the wind, they disperse, polluting the air. Being like this, the present work has as objective evaluates the incorporation of the great residue, originating from of the kaolin improvement, in partial substitution of all the employed aggregates in a conventional mixture of asphalt concrete, which was used in the paving of BR101/RN061 - passage between Ponta Negra and Ares. That evaluation was accomplished in three stages. The first refers to the evaluation of the physical, thermal and mineralogical characteristics of the residue with the intention of to classify it and to define your application as aggregate (small and great). The second refers to the physical characterization of the aggregates and of the asphalt material used in the conventional mixture. And the third, to the evaluation of the mixtures containing residue, which were elaborated starting from the conventional mixture with the gradual incorporation of the residue, from 5 to 40%, in substitution to the part of the conventional aggregates, in way to obtain similar particle size curves the one of the conventional mixture. That evaluation was accomplished through the comparison between the volumetric composition, the mechanical behavior and the susceptibility to the humidity of the mixtures containing residue with the one of the conventional mixture, and with the one of the DNIT specifications. The results show that the great residue originating from of the kaolin improvement has grains of the most varied size, being like this, it can substitute part of all the conventional aggregates and of the filler in an asphalt mixture. Besides, your mineralogical composition presented the same present minerals in the composition of conventional aggregates used in paving. The results evaluation of the volumetric composition of the mixtures containing residue indicates that it can use up to 30% of residue in substitution to the conventional aggregates. The evaluation of the mechanical behavior of those mixtures indicates that the residue increment in the studied mixtures caused an increase of the stability and a reduction of the resistance to the traction. The values obtained in the resistance to the traction meet below the minimum value specified by DNIT, but close to the value obtained in the conventional mixture. When taking in consideration the susceptibility of the same ones to the humidity, the results indicate that she can use up to 25% of residue

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The groundwater quality has been compromised as a result of the intensification of human activities over the years. Groundwater contamination by nitrate is one of the effects of this degradation, a socio-environmental problem that affects many regions of the world and particular the city of Natal (RN). Developing techniques for nitrate removal in water is intended to eliminate or reduce the concentration of this compound, and those that involve biological processes have produced economic and environmental advantages. This study proposes a technology for biological removal of nitrate in water supply for humans, using the endocarp s coconut as a carbon source and bacteria support. The experiments were performed in pilot scale anoxic, testing different areas of the substrate surface. Results showed high rates nitrate removal during the monitoring period, noting the occurrence of denitrification after the beginning of system operation. The best performance was achieved in the treatment system containing substrate surface area increased, indicating that the decrease in the endocarp size contributed to increased bacterial activity, improving the ability to remove nitrate. About the quality analyzed aspects of water, it was found that the proposed technology has the potential water use for human consumption

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aquatic ecosystems can play a role as carbon-dioxide-source or carbon-dioxide-sink systems due to the high predominance of heterotrophic or autotrophic metabolism. The primary production can strongly affect the carbon balance (CO2) through the consumption of carbon dioxide in the photosynthesis, especially in eutrophic environment, acting as a carbon sink. The present study tested the hypothesis that the eutrophic reservoirs in tropical semi-arid region are carbon dioxide-sink systems due to the high primary productivity presented in these systems. Five Brazilian reservoirs from the semi-arid in the northeast region were monitored monthly during four years (2010 to 2013) with a prolonged drought event identified during the study. The results showed an increasing level of eutrophication over the period of prolonged drought, with the predominance of autotrophy. Significant negative correlations were observed between the partial pressure of CO2 (pCO2) (p<0,001) and chlorophyll-a in the Boqueirão, Passagem das Traíras, Dourado and Gargalheiras reservoirs, showing a pattern of the carbon dioxide-sink systems. However, this pattern was not found in Cruzeta reservoir. In summary, in the tropical semi-arid region, hydrological and morphometric variables can lead to different behaviors of the water-supply reservoirs on the carbon metabolism. The eutrophic reservoirs evaluated showed a negative relationship between pCO2 and Chl-a, which suggests that these water bodies show an autotrophic metabolism and behave as carbon dioxide- sink systems

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emissions of CO2 in the atmosphere have increased successively by various mechanisms caused by human action, especially as fossil fuel combustion and industrial chemical processes. This leads to the increase in average temperature in the atmosphere, which we call global warming. The search for new technologies to minimize environmental impacts arising from this phenomenon has been investigated. The capture of CO2 is one of the alternatives that can help reduce emis ions of greenhouse gases. The CO2 can be captured through the process of selective adsorption using adsorbents for this purpose. Were synthesized by hydrothermal method, materials of the type MCM-41 and Al-MCM-41 in the molar ratio Si / Al equal to 50. The synthesis of gels were prepared from a source of silicon, sodium, water and aluminum in the case of Al-MCM-41. The period of synthesis of the materials was 5 days in autoclave at 100°C. After that time materials were filtered, washed and dried in greenhouse at 100 º C for 4 hours and then calcined at 450 º C. Then the calcined material was functionalized with the Di-isopropylamine (DIPA) by the method of wet impregnation. We used 0.5 g of material mesopores to 3.5 mL of DIPA. The materials were functionalized in a closed container for 24 hours, and after this period were dried at brackground temperature for 2 hours. Were subsequently subjected to heat treatment at 250°C for 1 hour. These materials were used for the adsorption of CO2 and were characterized by XRD, FT-IR, BET / BJH, SEM, EDX and TG / DTG. Tests of adsorption of CO2 was carried out under the following conditions: 100 mg of adsorbent, temperature of 75°C under flow of 100 mL/min of CO2 for 2 hours. The desorption of CO2 was carried out by thermogravimetry from ambient temperature to 900ºC under flow of 25 mL min of He and a ratio of 10ºC/min. The difratogramas X-ray for the synthesized samples showed the characteristic peaks of MCM-41, showing that the structure of it was obtained. For samples functionalized there was a decrease of the intensities of these peaks, with a consequent reduction in the structural ordering of the material. However, the structure was preserved mesopores. The adsorption tests showed that the functionalized MCM-41 is presented as a material promising adsorbent, for CO2 capture, with a loss of mass on the desorption CO2 of 7,52%, while that in Al-MCM- 41 functionalized showed no such loss

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Corrosion inhibitors in solution are utilized to minimize processes from corrosion in steel. Of the present dissertation was evaluated the efficiency by inhibition from the surfactant saponified coconut oil (OCS) in the carbon steel 1020 through in linear polarization electrochemistry technique, well as, studied the process from adsorption through from the isotherms from Langmuir, Frumkin and Temkin. The corrosion current was determined through in Tafel extrapolation from the curves in the polarization, and then, was calculated the efficiency in the inhibitor to each concentration and temperature. Were studied four concentrations (12,5 ppm, 25 ppm, 50 ppm, and 75 ppm) in the inhibitor OCS and one in the NaCl salt (10.000 ppm) in six temperatures (301 K, 308 K, 313 K, 318 K, 323 K, and 328 K) in triplicate. By the results obtained observed that the technique applied can evaluated with rapidity and efficiency corrosion inhibitors. In relation to the isotherms, the than best appropriated was the in Langmuir and in the concentrations studied, the that obtained the best efficiency was the concentration of 75 ppm

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work a biodegradable composite using the carnauba straw s powder as reinforcement on chitosan matrix polymeric were manufactured. Firstly, were carried out the chemistry characterization of the carnauba straw s powder before and after treatments with NaOH and hexane. Goering and Van Soest method (1970), flotation test, moisture absorption, FTIR, TG/DTG, DSC and SEM have also being carried out. Composites were developed with variations in granulometry and in powder concentrations. They were characterized by TG/DTG, SEM and mechanicals properties. The results of chemical composition showed that the carnauba straw s powder is composed of 41% of cellulose; 28,9% of hemicellulose and 14% of lignin.The flotation test have indicated that the chemical treatment with NaOH decreased the powder s hidrophilicity.The thermal analysis showed increased of thermal stability of material after treatments. The results of FTIR and SEM revealed the removal of soluble materials from the powder (hemicelluloses and lignin), the material became rougher and clean. The composites obtained showed that the mechanicals properties of the composites were decreased in respect at chitosan films, and the composites with the powder at 150 Mesh showed less variation in the modulus values. The speed test of 10 mm/min showed the better reproducibility of the results and is in agreement to the standard ASTM D638. The SEM analysis of fracture showed the low adhesion between the fiber/matrix. The increase of volume of powder in the composite caused a decrease in values of stress and strain for the samples with untreated powder and treated with hexane. The composite with 50% of the powder s treated in NaOH didn t have significant variation in the values of stress and strain as compared with the composites with 10% of the powder, showing that the increase in the volume of fiber didn t affect the stress and strain of the composite. Thereby, it is concluded that the manufacture of polymeric composites of chitosan using carnauba straw s powder can be done, without need for pre-treatment of reinforcement, become the couple of carnauba straw s powder-chitosan a good alternative for biodegradable composites