298 resultados para Mecanica ondulatoria


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The application of composite materials and in particular the fiber-reinforced plastics (FRP) has gradually conquered space from the so called conventional materials. However, challenges have arisen when their application occurs in equipment and mechanical structures which will be exposed to harsh environmental conditions, especially when there is the influence of environmental degradation due to temperature, UV radiation and moisture in the mechanical performance of these structures, causing irreversible structural damage such as loss of dimensional stability, interfacial degradation, loss of mass, loss of structural properties and changes in the damage mechanism. In this context, the objective of this thesis is the development of a process for monitoring and modeling structural degradation, and the study of the physical and mechanical properties in FRP when in the presence of adverse environmental conditions (ageing). The mechanism of ageing is characterized by controlled environmental conditions of heated steam and ultraviolet radiation. For the research, it was necessary to develop three polymer composites. The first was a lamina of polyester resin reinforced with a short glass-E fiber mat (representing the layer exposed to ageing), and the other two were laminates, both of seven layers of reinforcement, one being made up only of short fibers of glass-E, and the other a hybrid type reinforced with fibers of glass-E/ fibers of curaua. It should be noted that the two laminates have the lamina of short glass-E fibers as a layer of the ageing process incidence. The specimens were removed from the composites mentioned and submitted to environmental ageing accelerated by an ageing chamber. To study the monitoring and modeling of degradation, the ageing cycles to which the lamina was exposed were: alternating cycles of UV radiation and heated steam, a cycle only of UV radiation and a cycle only of heated steam, for a period defined by norm. The laminates have already undergone only the alternating cycle of UV and heated steam. At the end of the exposure period the specimens were subjected to a structural stability assessment by means of the developed measurement of thickness variation technique (MTVT) and the measurement of mass variation technique (MMVT). Then they were subjected to the mechanical tests of uniaxial tension for the lamina and all the laminates, besides the bending test on three points for the laminates. This study was followed by characterization of the fracture and the surface degradation. Finally, a model was developed for the composites called Ageing Zone Diagram (AZD) for monitoring and predicting the tensile strength after the ageing processes. From the results it was observed that the process of degradation occurs Abstract Raimundo Nonato Barbosa Felipe xiv differently for each composite studied, although all were affected in certain way and that the most aggressive ageing process was that of UV radiation, and that the hybrid laminated fibers of glass-E/curaua composite was most affected in its mechanical properties

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The limits to inform is about the character stico of basic, quimica, mineralogical and mechaniques of matlaughed material used in the manufacturing process the product certified in economic region the Cariri, specifically in the city of Crato, Ceará state, motivated the development of this work, since in this region the exist ing economic context that a general appear as important in the production chains. Were made twentyfive soils-test specimen collection and the study was performed to differentiate the mat laugh materials of variaveis processing of mathing raw materials in the factory The product mica monkeys by extrusion and pressing. The results were obtained ap s as analyzes: grain size, index of plasticity, fluoresce incidence X-ray difration the X-ray, and analyzes thermicals and properties technological. through s of curves gresifica returned to was a comparison between the retro the linear, absorb to water, porosity and bulk density. the results show that the excellent distribution and character acceptable available for the processing of the structure color dark red. needing, therefore, of the mixture of a less plastic clay with thick granulation, that works as plasticity reducer. In spite of the different resignation forms for prensagem and extrusion, the characteristics of absorption of water and rupture tension the flexing was shown inside of the patterns of ABNT

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The static and cyclic assays are common to test materials in structures.. For cycling assays to assess the fatigue behavior of the material and thereby obtain the S-N curves and these are used to construct the diagrams of living constant. However, these diagrams, when constructed with small amounts of S-N curves underestimate or overestimate the actual behavior of the composite, there is increasing need for more testing to obtain more accurate results. Therewith, , a way of reducing costs is the statistical analysis of the fatigue behavior. The aim of this research was evaluate the probabilistic fatigue behavior of composite materials. The research was conducted in three parts. The first part consists of associating the equation of probability Weilbull equations commonly used in modeling of composite materials S-N curve, namely the exponential equation and power law and their generalizations. The second part was used the results obtained by the equation which best represents the S-N curves of probability and trained a network to the modular 5% failure. In the third part, we carried out a comparative study of the results obtained using the nonlinear model by parts (PNL) with the results of a modular network architecture (MN) in the analysis of fatigue behavior. For this we used a database of ten materials obtained from the literature to assess the ability of generalization of the modular network as well as its robustness. From the results it was found that the power law of probability generalized probabilistic behavior better represents the fatigue and composites that although the generalization ability of the MN that was not robust training with 5% failure rate, but for values mean the MN showed more accurate results than the PNL model

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It presents a solar collector to be used in a system for heating water for bathing, whose main characteristics are its low cost and easy manufacturing and assembly. The absorbing surface of the collector is formed by an aluminum plate with eight flaps where they lodge PVC pipes. The catchment area of solar radiation corresponds to 1.3 meters. The collector box was made of wood, is covered by transparent glass and thermal insulation of tire chips and expanded polystyrene (EPS). Absorber tubes were connected in parallel through the use of PVC fittings and fixed to the plate by the use of metal poles and rivets. The entire absorber received paint flat black for better absorption of sunlight. The system worked on a thermosiphon assembly and absorber of the collector has been tested in two configurations: with the tubes facing up, directly exposed to the impact of sunlight and facing down, exchanging heat with the plate by conduction. It was determined the most efficient configuration for the correct purpose. The solar collector was connected to a thermal reservoir, also alternative, low-cost forming the system of solar water heating. We evaluated thermal parameters that proved the viability of the heating system studied

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ceramics with porous cellular structure, called ceramic foams, have a potential use in several applications, such as: thermal insulation, catalyst supports, filters, and others. Among these techniques to obtain porous ceramics the replication method is an important process. This method consists of impregnation of a sponge (usually polymer) with ceramic slurry, followed by a heat treatment, which will happen the decomposition of organic material and sintering the ceramic material, resulting in a ceramic structure which is a replica of impregnated sponge. Knowledge of the mechanical properties of these ceramics is important for these materials can be used commercially. Gibson and Ashby developed a mathematical model to describe the mechanical behavior of cellular solids. This model wasn´t for describing the ceramics behavior produced by the replica method, because it doesn´t consider the defects from this type of processing. In this study were researched mechanical behavior of porous alumina ceramics obtained by the replica method and proposed modifications to the model of Gibson and Ashby to accommodate this material. The polymer sponge used in processing was characterized by thermogravimetric analysis and scanning electron microscopy. The materials obtained after sintering were characterized by mechanical strength tests on 4-point bending and compression, density and porosity and by scanning electron microscopy. From these results it was evaluated the mechanical strength behavior compared to Gibson and Ashby model for solid cellular structure and was proposed a correction of this model through a factor related to struts integrity degree, which consider fissures present in the structure of these materials besides defects geometry within the struts

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed to investigate the use of cane sugar ashes from small-scale stills of Eunápolis region, state of Bahia, in pottery mass that can be developed as porcelain stoneware. Bahia is the second largest producer of rum distillery in Brazil. In the production of rum is produced residue called bagasse, which is used to generate electricity in Power plants and in the distillery itself, generating ashes as residue, which is played in nature, causing environmental damage. We studied 5 (five) formulations of 0% 10% 20%, 30% and 40% by weight of the ash, without ignition and 3 (three) formulations of 10%, 20% and 30% with gray ash temperature of 1250ºC. The formulation at 0% by weight of ash was used for a comparison between the traditional mass of porcelain stoneware and the masses with the addition of ash calcined, replacing feldspar. The percentage by weight of kaolin and of Clay was kept the same, 30%, and all raw materials were derived from the state of Bahia. The samples were made in uniaxial array with dimensions of (60 x 20 x 5) mm and compressed to a pressure of 45 MPa. Assays were performed to characterize the raw by X-ray fluorescence, X-ray diffraction, ATD and ATG and Dilatometric analysis. The samples were sintered at temperatures of 1100°C, 1150°C, 1200°C and 1250°C, for the specimens with the ashes without ash and 1150° C and 1200° C for specimens with the gray level of calcined 60 minutes. and then we made a cooling ramp with the same rate of warming until reach ambient temperature. The sintered bodies were characterized by water absorption, porosity, linear shrinkage, bending strength and XRD of the fracture surface and the results analyzed. It was proven, after results of tests performed, that it is possible to use the ash residue of sugar cane bagasse on ceramic coating with the addition of up to 10% wt of the residue ash

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An alternative box-type solar cooker built starting from the scrap of a tire and a scrap of old office chair is presented, which principles functions are the effect greenhouse and the concentration. The tire served as structure for making of is the baking enclosure where the absorber (roasting pan 20x30cm) of the solar is located, being re-covered for a glass blade for the generation of the greenhouse effect isolated lateral and having deep its and for a composite the plaster base and EPS. Segments of plain mirrors had been placed in the laterals of the oven/cook for the concentration of the radiation and a reflecting parable was introduced in the baking enclosure for the exploitation of the incident reflected radiation inside of the oven/cook. The oven/cook is mobile to allow one better aiming of exactly in relation to the apparent movement of the sun. The thermal economic and of materials viabilities of the stove/cook in study will be demonstrate. The average internal temperature of the absorber was around 152,3°C and the internal temperature around 110°C. Will demonstrate that toits low cost and good thermal performance, represents basic characteristics for the viability of large use of such archetype, mainly for cooking the decreases and averages temperatures. One will reveal that the archetype in study is competitive with the box-type solar cooker conceived in the whole world

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The growing demand in the use of composite materials necessitates a better understanding of its behavior related to many conditions of loading and service, as well as under several ways of connections involved in mechanisms of structural projects. Within these project conditions are highlighted the presence of geometrical discontinuities in the area of cross and longitudinal sections of structural elements and environmental conditions of work like UV radiation, moisture, heat, leading to a decrease in final mechanical response of the material. In this sense, this thesis aims to develop studies detailed (experimental and semi-empirical models) the effects caused by the presence of geometric discontinuity, more specifically, a central hole in the longitudinal section (with reduced cross section) and the influence of accelerated environmental aging on the mechanical properties and fracture mechanism of FGRP composite laminates under the action of uniaxial tensile loads. Studies on morphological behavior and structural degradation of composite laminates are performed by macroscopic and microscopic analysis of affected surfaces, in addition to evaluation by the Measurement technique for mass variation (TMVM). The accelerated environmental aging conditions are simulated by aging chamber. To study the simultaneous influence of aging/geometric discontinuity in the mechanical properties of composite laminates, a semiempirical model is proposed and called IE/FCPM Model. For the stress concentration due to the central hole, an analisys by failures criteria were performed by Average-Stress Criterion (ASC) and Point-Stress Criterion (PSC). Two polymeric composite laminates, manufactured industrially were studied: the first is only reinforced by short mats of fiberglass-E (LM) and the second where the reinforced by glass fiber/E comes in the form of bidirectional fabric (LT). In the conception configurations of laminates the anisotropy is crucial to the final mechanical response of the same. Finally, a comparative study of all parameters was performed for a better understanding of the results. How conclusive study, the characteristics of the final fracture of the laminate under all conditions that they were subjected, were analyzed. These analyzes were made at the macroscopic level (scanner) microscope (optical and scanning electron). At the end of the analyzes, it was observed that the degradation process occurs similarly for each composite researched, however, the LM composite compared to composite LT (configurations LT 0/90º and LT ±45º) proved to be more susceptible to loss of mechanical properties in both regarding with the central hole as well to accelerated environmental aging

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of Progressing Cavity Pumps (PCPs) in artificial lift applications in low deep wells is becoming more common in the oil industry, mainly, due to its ability to pump heavy oils, produce oil with large concentrations of sand, besides present high efficiency when compared to other artificial lift methods. Although this system has been widely used as an oil lift method, few investigations about its hydrodynamic behavior are presented, either experimental or numeric. Therefore, in order to increase the knowledge about the BCP operational behavior, this work presents a novel computational model for the 3-D transient flow in progressing cavity pumps, which includes the relative motion between rotor and stator, using an element based finite volume method. The model developed is able to accurately predict the volumetric efficiency and viscous looses as well as to provide detailed information of pressure and velocity fields inside the pump. In order to predict PCP performance for low viscosity fluids, advanced turbulence models were used to treat, accurately, the turbulent effects on the flow, which allowed for obtaining results consistent with experimental values encountered in literature. In addition to the 3D computational model, a simplified model was developed, based on mass balance within cavities and on simplification on the momentum equations for fully developed flow along the seal region between cavities. This simplified model, based on previous approaches encountered in literature, has the ability to predict flow rate for a given differential pressure, presenting exactness and low CPU requirements, becoming an engineering tool for quick calculations and providing adequate results, almost real-time time. The results presented in this work consider a rigid stator PCP and the models developed were validated against experimental results from open literature. The results for the 3-D model showed to be sensitive to the mesh size, such that a numerical mesh refinement study is also presented. Regarding to the simplified model, some improvements were introduced in the calculation of the friction factor, allowing the application fo the model for low viscosity fluids, which was unsuccessful in models using similar approaches, presented in previous works

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Companies involved in emerald mining and treatment represent an important area of industrial development in Brazil, with significative contribution to the worldwide production of such mineral. As a result, large volumes of emerald waste are constantly generated and abandoned in the environment, negatively contributing to its preservation. By the other side the interest of the use of mining waste as additive in ceramic products has been growing from researchers in recent years. The ceramic industry is constantly seeking to the marked amplification for the sector and perfecting the quality of the products and to increase the variety of applications. The technology of obtaining of ceramic tiles that uses mining residues assists market niches little explored. In this scenario, the objective of the present study was to characterize the residue generated from emerald mining as well as to assess its potential use as raw material for the production of ceramic tiles. Ceramic mixtures were prepared from raw materials characterized by X-ray fluorescence, X-ray diffraction, particle size analysis and thermal analysis. Five compositions were prepared using emerald residue contents of 0%, 10%, 20%, 30% and 40%. Samples were uniaxially pressed, fired at 1000, 1100 and 1200ºC and characterized aiming at establishing their mineralogical composition, water absorption, apparent porosity, specific mass, linear retraction and modulus of rupture. The results shows that the emerald residue, basically consisted of 73% of (SiO2 + Al2O3) and 17,77% of (MgO + Na2O+ K2O) (that facilitates sintering), can be added to the ceramic tile materials with no detrimental effect on the properties of the sintered products

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mortar is a type of adhesive products used in large scale in construction, it is a function of its variety and ease of application . Although industrialized product and endowed with technology in its production is very frequent occurrence of the same pathology , which causes frequent damage and losses in the construction industry. Faced with this real market situation , the technical and scientific study of the effects of the addition of diatomite on the rheological and mechanical behavior of adhesive mortars are needed. This work back as a suggestion the use of diatomite as a mineral additive in formulations of adhesive mortars for partial replacement of cellulose based additives . The choice of using this mineral occurs through physical, chemical and rheological properties that justify its use in this product line , and is a raw material abundant in our region and can thus contribute positively to the minimization of direct costs cellulose -based additives . Industrial adhesive mortar used for comparison , was type AC1 . Formulations of adhesive mortar with diatomite held constant dosed quantities of sand, cement and the water / cement (w / c ) , or adhesive mortar formulations were developed with levels 10, 20, 30 and 40% of diatomite substituting part of the cellulose -based additives . These mortars were subjected to the following tests that define and evaluate the rheological and mechanical behavior of this type of mortar. The results attest the best performance of the adhesive mortar type AC1 with partial replacement of 30 % of the cellulose-based additive for diatomite

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The growing demand in the use of composite materials necessitates a better understanding its behavior to many conditions of loading and service, as well as under several ways of connections involved in mechanisms of structural projects. It is know that most of the structural elements are designed with presence of geometric discontinuities (holes, notches, etc) in their longitudinal sections and / or transversals, and that these discontinuities affect the mechanical response of these elements. This work has aims to analyze a study of the mechanical response, when in the presence geometric discontinuity, of polymer matrix composite laminates (orthophthalic polyester) to the uniaxial tensile test. The geometric discontinuity is characterized by the presence of a center hole in the transversal section of the composite. In this study, different kinds of stacking sequences are tested, with and without the presence of the hole, so as to provide better understanding of the mechanical properties. This sense, two laminates were studied: the first is only reinforced by with seven layers short mats of fiberglass-E (CM) and the second where the reinforcement of fiberglass-E comes in the form of bidirectional fabric (CT), with only four layers. The laminate CT has the presence of anisotropy (sense of continuous fibers with respect to the applied load) as the main parameter influencing its mechanical behavior, behavior this, not observed for the CM. In addition to the mechanical properties was also studied the fracture characteristics developed in each composite laminated. The results also showed that the presence of the hole in the transversal section decreased the ultimate strength of laminates and changed the final characteristic of fracture in all kinds of composite laminated studied

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Removing microcontaminants from effluents is a challenge today, because of its high cost and low efficiency, especially in the treatment of effluents containing heavy metals. An alternative that has emerged is the use of biodegradable nanocomposites, which exhibit good removal and recovery performances, in addition to its low cost. With this in mind, the present study aimed to develop and characterize a nanocomposite based on hydroxyapatite (HAP), polyurethane (PU) and polyvinyl alcohol (PVA) for removing heavy metals. Thus, the research was conducted in several steps: i)- Physico-chemical and microbiological hospital effluent characterization; ii)- Production of hydroxyapatite by aqueous precipitation technique, and their characterization; iii)- Production of the nanocomposite in which the hydroxyapatite was added to the polyurethane prepolymers and then the polyvinyl alcohol/hydroxyapatite film was produced; iv)- Polyvinyl composite without film PU/HAp was also produced in the proportions of 20 and 40% HAp; v)- The composites was characterized by the techniques of XRD, FTIR, SEM / EDS, BET, Zeta Potential and TGA; vi)- The sisal and coconut fibres were washed and dried for comparative tests of adsorption; vii)- Adsorption tests for evaluating the removal of heavy metals (nickel and cadmium). Initial screening adsorption capacity (HAp; PU/HAp - 20 and 40%; PU / HAp / PVA), kinetic studies of adsorption of Cd (II) by HAp; multifactorial design analysis (factorial design) for identifying the most important variables in the adsorption of Cd (II) by composite PU/HAp. Also comparative analysis of adsorption of Cd and Ni by composite PU/HAp were conducted, as well as comparative tests of adsorption of Cd (coconut fibre) and Ni (sisal fibre). It was possible to verify that the composite PU/HAp 40% showed better effectiveness for the removal of Cd (II) and Ni (II), above 80%, equivalent to the lignocellulosic fibre used and HAp produced. As main conclusion, it can be referred that the composite PU/HAp 40% is an effective adsorvent to wastewater treatment for heavy metal removal, with low cost and high efficiency

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years there has been a significant growth in technologies that modify implant surfaces, reducing healing time and allowing their successful use in areas with low bone density. One of the most widely used techniques is plasma nitration, applied with excellent results in titanium and its alloys, with greater frequency in the manufacture of hip, ankle and shoulder implants. However, its use in dental implants is very limited due to high process temperatures (between 700 C o and 800 C o ), resulting in distortions in these geometrically complex and highly precise components. The aim of the present study is to assess osseointegration and mechanical strength of grade II nitrided titanium samples, through configuration of hollow cathode discharge. Moreover, new formulations are proposed to determine the optimum structural topology of the dental implant under study, in order to perfect its shape, make it efficient, competitive and with high definition. In the nitriding process, the samples were treated at a temperature of 450 C o and pressure of 150 Pa , during 1 hour of treatment. This condition was selected because it obtains the best wettability results in previous studies, where different pressure, temperature and time conditions were systematized. The samples were characterized by X-ray diffraction, scanning electron microscope, roughness, microhardness and wettability. Biomechanical fatigue tests were then conducted. Finally, a formulation using the three dimensional structural topology optimization method was proposed, in conjunction with an hadaptive refinement process. The results showed that plasma nitriding, using the hollow cathode discharge technique, caused changes in the surface texture of test specimens, increases surface roughness, wettability and microhardness when compared to the untreated sample. In the biomechanical fatigue test, the treated implant showed no flaws, after five million cycles, at a maximum fatigue load of 84.46 N. The results of the topological optimization process showed well-defined optimized layouts of the dental implant, with a clear distribution of material and a defined edge

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It presents a solar collector to be used in a system for heating water for bathing, whose main characteristics are low cost and easy manufacturing and assembly. The system operates under natural convection or thermosiphon. The absorbing surface of the collector is formed by twelve PVC pipes of 25 mm outside diameter connected in parallel via connections in T of the same material. The tubes were covered with absorbing fins made with recycled aluminum cans. We studied eight settings between absorber plate, thermal insulating EPS boards and thermal reservoirs 150 and 200 liters. It was determined the most efficient configuration for the correct purpose. We evaluated thermal parameters that proved the viability of the heating system studied