87 resultados para Gravity inversion. Basement relief. Potiguar basin. Constrained inversion
Resumo:
In the contemporary world to the deterioration of semi-arid areas of the planet has been the focus of media attention and the scientific community. Brazil has a semiarid, considered the most problematic of the world, either by pressure from physical factors, whether as a result of misguided public policies, has over time been suffering from the consequences of a deterioration that expands over the years. Methodologies, that amidst the problems of semi-arid, come against the deteriorating local, have a good chance to be reapplied in other contexts around the world. This research, based on methodological model for analyzing environmental deterioration, introduced and examined the applicability of the methodology in the semi-arid region of Rio Grande do Norte - Brazil. Although the results provide guidelines for the introduction of underground dams, the application of the methodology was ineffective, given the high rates of forest cover that gave low values for the physical diagnosis conservationist
Resumo:
The studied area is geologically located in the Northern Domain of the Borborema Province (Northeast Brazil), limited to the south by the Patos shear zone. Terranes of the Jaguaribeano system are dominant, flanked by the Piranhas (E and S sides) and Central Ceará (NE side) terranes. Its basement comprises gneiss -migmatite terrains of Paleoproterozoic to Archean age (2.6 to 1.9 Ga old), overprinted by neoproterozoic to cambrian tectonotherma l events. Narrow supracrustal belts ( schist belts) display a 1.6 to 1.8 Ga age, as shown by whole - rock Rb-Sr and zircon U-Pb and Pb/Pb dates in acid metavolcanics which dominate in the lower section of these sequences, and in coeval metaplutonics (granitic augen gneisses). From the stratigraphic point of view, three Staterian belts are recognized: 1. Orós Belt - made up by the Orós Group, subdivided in the Santarém (predominantly pure to impure quartzites, micaschists and metacarbonates) and Campo Alegre (metandesites, metabasalts, metarhyolites and metarhyodacites, interlayered with metatuffs and metasediments) formations, and by the Serra do Deserto Magmatic Suite (granitic augen gneisses). 2. Jaguaribe Belt - its lithostratigrahic-lithodemic framework is similar to the one of the Orós Belt, however with a greater expression of the volcano -plutonic components (Campo Alegre Formation and Serra do Deserto Magmatic Suite). The Peixe Gordo Sequence, separately described, is also related to this belt and contain s metasedimentary, metavolcanic (with subordinated volcanoclastics) and metaplutonic units. The first one correlated to the Orós Group and the latter the Serra do Deserto Magmatic Suite. 3. Western Potiguar Belt - represented by the Serra de São José Gro up, subdivided in the Catolezinho (biotite -amphibole gneisses with intercalations of metacarbonates, calcsilicate rocks, amphibolites and quartzite beds to the top) and Minhuins (quartzites, micaschists, metaconglomerates, calcsilicate rocks, acid to the b asic metavolcanics and metatuffs) formations. Its late Paleoproterozoic (Staterian) age was established by a Pb/Pb date on zircons from a granitic orthogneiss of the Catolezinho Formation. The petrographic characteristics and sedimentary structures of the Santarém Formation of the Orós Group point to deltaic to shallow marine depositional systems, overlain by deep water deposits (turbidites). The geodynamic setting of this region encompassed a large depositional basin, probably extending to the east of the Portalegre shear zone and west of the Senador Pompeu shear zone, with possible equivalents in the Jucurutu Formation of the Seridó Belt and in the Ceará Group of central Ceará. The Arneiróz Belt, west Ceará, displays some stratigraphic features and granito ids geochemically akin to the ones of the Orós Belt. The evolutionary setting started with an extensional phase which was more active in the eastern part of this domain (Western Potiguar and part of the Jaguaribe belts), where the rudite and psamite sedime ntation relates to a fluviatile rift environment which evolved to a prograding deltaic system to the west (Orós Group). The basaltic andesitic and rhyolitic volcanics were associated to this extensional phase. During this magmatic event, acid magmas also crystallized at plutonic depths. The Orós Group illustrates the environmental conditions in the western part of this domain. Later on, after a large time gap (1.6 to 1.1 Ga), the region was subjected to an extensional deformational episode marked by 900 Ma old (Sm-Nd data) basic rocks, possibly in connection with the deposition of the Cachoeirinha Group south of the Patos shear zone. In the 800 to 500 Ma age interval, the region was affected by important deformational and metamorphic events coupled with in trusion of granitic rocks of variable size (dykes to batholiths), related to the Brasiliano/Pan -African geotectonic cycle. These events produced structural blocks which differentiate, one from the other, according to the importance of anatectic mobilizatio n, proportion of high-grade supracrustals and the amount of neoproterozoic -cambrian granitoid intrusions. On this basis, a large portion of the Jaguaretama Block/Terrane is relatively well preserved from this late overprint. The border belts of the Jagua retama Block (Western Potiguar and Arneiroz) display kyanite-bearing (medium pressure) mineral associations, while in the inner part of the block there is a north-south metamorphic zoning marked by staurolite or sillimanite peak metamorphic conditions. Regarding the deformations of the Staterian supracrustal rocks, second and third phases were the most important, diagnosed as having developed in a progressive tectonic process. In the general, more vigorous conditions of PT are related to the interval tardi - phase 2 early-phase 3, whose radiometric ages and regional structuring indicators places it in the Brasiliano/Pan-African Cycle. In the Staterian geodynamic setting of Brazilian Platform , these sequences are correlated to the lower Espinhaço Supergroup (p.ex., Rio dos Remédios and Paraguaçu groups, a paleproterozoic rift system in the São Francisco Craton), the Araí and Serra da Mesa groups (north of Goiás, in the so -called Goiás Central Massif), and the Uatumã Group (in the Amazonian Craton). Granitic ( augen gneisses) plutonics are also known from these areas, as for example the A-type granites intrusive in the Araí and Serra da Mesa groups, dated at 1.77 Ga. Gravimetric and geological data place the limits of the Jaguaribeano System (terranes) along the Senador Pompeu Shear Zone (western border) and the Portalegre- Farias Brito shear zone (eastern and southern). However, the same data area not conclusive as regards the interpretation of those structures as suture of the terrane docking process. The main features of those shear zones and of involved lothological associations, appear to favour an intracontinental transpressional -transcurrent regime, during Neoproterozoic-Cambrian times, marking discontinuities along which different crustal blocks were laterally dispersed. Inside of this orogenic system and according to the magnetic data (total field map), the most important terrane boundary appears to be the Jaguaribe shear zone. The geochronological data, on some tectonostratigraphic associations (partly represented by the Ceará and Jucurutu groups), still at a preliminary level, besides the lack of granitic zonation and other petrotectonic criteria, do not allow to propose tectonic terrane assembly diagrams for the studied area
Resumo:
It is presently assumed that the Borborema Province resulted from a complex collisional process associated with the convergent movement of plates, possibly involving amalgamation and accretion of microplates. This process was consolidated at the end of the Brasiliano event. It is investigated the possible limits for the tectonostratigraphic terranes in the northern portion of the province based on an integrated study of geological and gravity data. The study area comprises the portion of the Borborema Province located north of the Patos Lineament, limited by longitudes 33º00 W and 43º29 44"W and latitudes 1º36 S and 8º00 S. A revision of the regional geology allowed to identify areas presenting contrasting geological attributes, possibly representing different terranes whose limits are always shear zones of Brasiliano-age. The Sobral-Pedro II shear zone is the only one undoubtedly presenting geological attributes of sutures zones. The other shear zones are very likely associated with a geodinymic context of accretion, involving oblique collisions (docking), transcurrent and/or transforming sutures, and deep intracrustal shear zones. The gravity data contributed as a tool to identify strong lateral contrasts of density inside the upper crust possibly associated with crustal blocks tectonically juxtaposed. The dominant long wavelength anomaly in the Bouguer anomaly map is an expressive gradient, grossly parallel to the continental margin, caused by density variation across the crust-mantle interface in the transition from the continental crust to the oceanic crust originated by the separation between South America and Africa. Medium to small wavelength anomalies are due to intracrustal heterogeneities such as different Precambrian crustal blocks, Brasiliano-age granites and Mesozoic sedimentary basins. A regional-residual separation of the Bouguer anomaly map was performed in order to enhance in the residual map the effect due to intracrustal heterogeneities. The methodology used for this separation was a robust polinomial fitting. The inversion of residual gravity field resulted in a density contrast map (Δρ), in an equivalent layer that provided more accurated anomalies contours and consolidated the model which the sources of residual anomalies are located in the upper part of the present crust. Based on the coincidence of gravity lineaments in the residual map and Brasiliano shear zones, and using additional geological information, the following shear zones are proposed as limits between terranes: Patos shear zone, Sobral-Pedro II shear zone, Picuí-João Câmara shear zone, Remígio-Pocinhos shear zone, Senador Pompeu shear zone, Tauá shear zone, and Portalegre shear zone. Based on the geological/geophysical information it is attributed a higher level of confidence to the first three proposed limits(Patos, Sobral Pedro II, and Picuí-João Câmara shear zones). From west to east, these shear zones individualize the following terranes: Northwest of Ceará terrane, Central Ceará terrane, Tauá terrane, Orós-Jaguaribe terrane, Seridó terrane, and São José de Campestre terrane. In our study, the Rio Piranhas and Patos terranes are questioned because their previously proposed limits do not present good geological and gravimetric evidences. On the other hand, the previously proposed Cearense terrane is now subdivided into Central Ceará and Tauá terranes. Two residual gravity profiles located in the Seridó belt were interpreted using 2 ½ D direct gravity modeling. The main result of the modeling process is that all anomalies, with the exception of one, can be explained by outcroppring bodies, therefore restricted to the upper part of the present crust
Resumo:
The Rio do Peixe Basin is located in the border of Paraíba and Ceará states, immediately to the north of the Patos shear zone, encompassing an area of 1,315 km2. This is one of the main basins of eocretaceous age in Northeast Brazil, associated to the rifting event that shaped the present continental margin. The basin can be divided into four sub-basins, corresponding to Pombal, Sousa, Brejo das Freiras and Icozinho half-grabens. This dissertation was based on the analysis and interpretation of remote sensing products, field stratigraphic and structural data, and seismic sections and gravity data. Field work detailed the lithofacies characterization of the three formations previously recognised in the basin, Antenor Navarro, Sousa and Rio Piranhas. Unlike the classical vertical stacking, field relations and seismostratigraphic analysis highlighted the interdigitation and lateral equivalency between these units. On bio/chrono-stratigraphic and tectonic grounds, they correlate with the Rift Tectonosequence of neocomian age. The Antenor Navarro Formation rests overlies the crystalline basement in non conformity. It comprises lithofacies originated by a braided fluvial system system, dominated by immature, coarse and conglomeratic sandstones, and polymict conglomerates at the base. Its exposures occur in the different halfgrabens, along its flexural margins. Paleocurrent data indicate source areas in the basement to the north/NW, or input along strike ramps. The Sousa Formation is composed by fine-grained sandstones, siltites and reddish, locally grey-greenish to reddish laminated shales presenting wavy marks, mudcracks and, sometimes, carbonate beds. This formation shows major influence of a fluvial, floodplain system, with seismostratigraphic evidence of lacustrine facies at subsurface. Its distribution occupies the central part of the Sousa and Brejo das Freiras half-grabens, which constitute the main depocenters of the basin. Paleocurrent analysis shows that sediment transport was also from north/NW to south/SE
Resumo:
The Palestina Graben is one of the NE-trending asymmetric grabens of the Araripe Basin. This basin rests on the precambrian terrains of the Transversal Zone, Borborema Province, immediately to the south of the Patos Lineament. It is part of the Interior Basins province of Northeastern Brazil, being related to the fragmentation of the Gondwana supercontinent and the opening of the South Atlantic ocean. The Palestina Graben trends NE-SW and presents an asymmetric geometry, controled by the NW extensional eocretaceous strain. The graben borders display distinct geometries. The SE border is a flexural margin, characterized by the non conformity of the eopaleozoic Mauriti Formation (the oldest unit of the basin) overlying the crystalline basement, but also affected by normal faults with small displacements. On the opposite, the NW border is continuous and rectilinear, being marked by normal faults with major displacements, that control the general tilting of the layers to the NW. In this sense, the Mauriti Formation is overlain by the Brejo Santo, Missão Velha (which also occurs in the Brejo Santo-Mauriti horst, to the NW of the fault border) and Abaiara formations, the latter restricted to the graben. The interpretation of available gravity data and a seismic line indicates that the main fault has a variable dip slip component, defining two deeper portions within the graben, in which the sedimentary column can reach thicknesses of up to 2 km. Regarding to the stratigraphy of Araripe Basin in the study area, the sedimentary package includes three distinct tectonosequences. The Paleozoic Syneclisis Tectonosequence is composed by the Mauriti Formation, deposited by a braided fluvial system. The Jurassic Tectonosequence, whose tectonic setting is still debatable (initial stage of the Neocomian rift, or a pre-rift syneclisis ?), is represented by the Brejo Santo Formation, originated in a distal floodplain related to ephemeral drainages. The Rift Tectonosequence, of neocomian age, includes the Missão Velha Formation, whose lower section is related to a braided to meandering fluvial system, outlining the Rift Initiation Tectonic Systems Tract. The upper section of the Missão Velha Formation is separated from the latter by a major unconformity. This interval was originated by a braided fluvial system, overlain by the Abaiara Formation, a deltaic system fed by a meandering fluvial system. Both sections correspond to the Rift Climax Tectonic Systems Tract. In the area, NE-trending normal to oblique faults are associated with NW transfer faults, while ENE to E-W faults display dominant strike slip kinematics. Both NE and E-W fault sets exhibit clear heritage from the basement structures (in particular, shear zones), which must have been reactivated during the eocretaceous rifting. Faults with EW trends display a dominant sinistral shear sense, commonly found along reactivated segments of the Patos Lineament and satellyte structures. Usually subordinate, dextral directional movements, occur in faults striking NNW to NE. Within this framework bearing to the Palestina Graben, classical models with orthogonal extension or pull-apart style deserve some caution in their application. The Palestina Graben is not limited, in its extremeties, by E-W transcurrent zones (as it should be in the case of the pull-apart geometry), suggesting a model close to the classic style of orthogonal opening. At the same time, others, adjacent depocenters (like the Abaiara-Jenipapeiro semi-graben) display a transtensional style. The control by the basement structures explains such differences
Resumo:
The Cumuruxatiba basin is located at the southern coast State of Bahia in northeastern of Brazil. This basin was formed in distensional context, with rifting and subsequent thermal phase during Neocomian to late Cretaceous. At Cenozoic ages, the Abrolhos magmatism occurs in the basin with peaks during the Paleocene and Eocene. In this period, there was a kinematic inversion in the basin represented by folds related to reverse faults. Structural restoration of regional 2D seismic sections revealed that most of the deformation was concentrated at the beginning of the Cenozoic time with the peak at the Lower Eocene. The post-Eocene is marked by a decrease of strain rate to the present. The 3D structural modeling revealed a fold belt (trending EW to NE-SW) accommodating the deformation between the Royal Charlotte and Sulphur Minerva volcanic highs. The volcanic eruptions have caused a differential overburden on the borders of the basin. This acted as the trigger for halokinesis, as demonstrated by physical modeling in literature. Consequently, the deformation tends to be higher in the edges of the basin. The volcanic rocks occur mainly as concordant structures (sills) in the syn-tectonic sediment deposition showing a concomitant deformation. The isopach maps and diagrams of axis orientation of deformation revealed that most of the folds were activated and reactivated at different times during the Cenozoic. The folds exhibit diverse kinematic patterns over time as response to behavior of adjacent volcanic highs. These interpretations allied with information on the petroleum system of the basin are important in mapping the prospects for hydrocarbons
Resumo:
The Borborema Province, located in northeastern Brazil, has a basement of Precambrian age and a tectonic framework structured at the Neoproterozoic (740-560 Ma). After separation between South America and Africa during the Mesozoic, a rift system was formed, giving rise to a number of marginal and inland basins in the Province. After continental breakup, episodes of volcanism and uplift characterized the evolution of the Province. Plateau uplift was initially related to magmatic underplating of mafic material at the base of the crust, perhaps related to the generation of young continental plugs (45-7 Ma) along the Macau-Queimadas Alignment (MQA), due to a small-scale convection at the continental edge. The goal of this study is to investigate the causes of intra-plate uplift and its relationship to MQA volcanism, by using broadband seismology and integrating our results with independent geophysical and geological studies in the Borborema Province. The investigation of the deep structure of the Province with broadband seismic data includes receiver functions and surface-wave dispersion tomography. Both the receiver functions and surface-wave dispersion tomography are methods that use teleseismic events and allow to develop estimates of crustal parameters such as crustal thickness, Vp/Vs ratio, and S-velocity structure. The seismograms used for the receiver function work were obtained from 52 stations in Northeast Brazil: 16 broadband stations from the RSISNE network (Rede Sismográfica do Nordeste do Brasil), and 21 short-period and 6 broadband stations from the INCT-ET network (Instituto Nacional de Ciência e Tecnologia – Estudos Tectônicos). These results add signifi- cantly to previous datasets collected at individual stations in the Province, which include station RCBR (GSN - Global Seismic Network), stations CAUB and AGBL (Brazilian Lithosphere Seismic Project IAG/USP), and 6 other broadband stations that were part of the Projeto Milênio - Estudos geofísicos e tectônicos na Província Borborema/CNPq. For the surface-wave vii tomography, seismograms recorde at 22 broadband stations were utilized: 16 broadband stations from the RSISNE network and 6 broadband stations from the Milênio project. The new constraints developed in this work include: (i) estimates of crustal thickness and bulk Vp/Vs ratio for each station using receiver functions; (ii) new measurements of surfassewave group velocity, which were integrated to existing measurementes from a continental-scale tomography for South America, and (iii) S-wave velocity models (1D) at various locations in the Borborema Province, developed through the simultaneous inversion of receiver functions and surface-wave dispersion velocities. The results display S-wave velocity structure down to the base of the crust that are consistent with the presence of a 5-7.5 km thick mafic layer. The mafic layer was observed only in the southern portion of the Plateau and absent in its northern portion. Another important observation is that our models divide the plateau into a region of thin crust (northern Plateau) and a region of thick crust (southern Plateau), confirming results from independent refraction surveys and receiver function analyses. Existing models of plateau uplift, nonetheless, cannot explain all the new observations. It is proposed that during the Brazilian orogeny a layer of preexisting mafic material was delaminated, as a whole or in part, from the original Brasiliano crust. Partial delamination would have happened in the southern portion of the plateau, where independent studies found evidence of a more resistant rheology. During Mesozoic rifting, thinning of the crust around the southern Plateau would have formed the marginal basins and the Sertaneja depression, which would have included the northern part of the Plateau. In the Cenozoic, uplift of the northern Plateau would have occurred, resulting in a northern Plateau without mafic material at the base of the crust and a southern Plateau with partially delaminated mafic layer.
Resumo:
The present study aims the characterization of thermally affected carbonate rocks from Jandaíra Formation in contact with Paleogene and Neogene basic intrusions in the region of the Pedro Avelino and Jandaíra municipalities (RN), northeastern Brazil. For this study, field, petrographic, x-ray diffraction, electron microprobe, and whole rock litogeochemistry data of carbonates were undertaken. The thermally unaffected limestones are classified like wackstones, grainstones and packstones. They may constitute carbonates grains of benthic foraminifera, echinoderm spines, ostracods, algae, corals, bivalves, gastropods, peloids and intraclasts. The porosities are classified like vug, intraparticle, interparticle, intercrystal and moldic types. The major minerals are calcite, ankerite and dolomite; the detrital are montmorillonite, pyrite, limonite, quartz and microcline. The thermally affected limestones are very coarse to very fine-grained and light to dark gray color. The fossiliferous components totally disappear, and the porosity tends to disappear. With the data obtained, it can be inferred that the carbonate protoliths would be calciferous to dolomitic limestones, both with small amount of clay minerals. Crystalline carbonates from dolomitic protolith have rhombohedral calcite and iron oxides / hydroxides, making the rocks much darker. The carbonates from calciferous protolith have a wide variation of grain size according to the recrystallization degree, increasing toward contact with the basic bodies. In this group, it was identified the minerals lizardite and spinel in weakly to moderately affected samples, and spinel and spurrite in strongly affected rocks, as well as calcite, that occur everywhere. The geological context (shallow level diabase intrusions), the crystallization of the pyrometamorphic minerals spurrite and olivine, and comparison with diagrams from the literature allow estimating temperatures and pressures around 1050-1200 °C and 0.5-1.0 kbar, respectively, for PTOTAL=PCO2. The post-intrusion cooling would have afforded the releasing of metasomatic / hydrothermal fluids, allowing the opening of the metamorphic system, with possible contribution of chemical elements from host units (sandstones, shales) and from basic intrusions. This would induce hydration of previous phases, allowing the formation of serpentine, chlorite and brucite. The results discussed here reveal the strong influence of the heat from basic intrusions within the sedimentary pile. Whereas in the offshore portion of the basin occur sills with up to 1000 m thickness, the understanding of pyrometamorphism might be useful for understanding and measuring the thermally affected rocks.
Resumo:
The present study aims the characterization of thermally affected carbonate rocks from Jandaíra Formation in contact with Paleogene and Neogene basic intrusions in the region of the Pedro Avelino and Jandaíra municipalities (RN), northeastern Brazil. For this study, field, petrographic, x-ray diffraction, electron microprobe, and whole rock litogeochemistry data of carbonates were undertaken. The thermally unaffected limestones are classified like wackstones, grainstones and packstones. They may constitute carbonates grains of benthic foraminifera, echinoderm spines, ostracods, algae, corals, bivalves, gastropods, peloids and intraclasts. The porosities are classified like vug, intraparticle, interparticle, intercrystal and moldic types. The major minerals are calcite, ankerite and dolomite; the detrital are montmorillonite, pyrite, limonite, quartz and microcline. The thermally affected limestones are very coarse to very fine-grained and light to dark gray color. The fossiliferous components totally disappear, and the porosity tends to disappear. With the data obtained, it can be inferred that the carbonate protoliths would be calciferous to dolomitic limestones, both with small amount of clay minerals. Crystalline carbonates from dolomitic protolith have rhombohedral calcite and iron oxides / hydroxides, making the rocks much darker. The carbonates from calciferous protolith have a wide variation of grain size according to the recrystallization degree, increasing toward contact with the basic bodies. In this group, it was identified the minerals lizardite and spinel in weakly to moderately affected samples, and spinel and spurrite in strongly affected rocks, as well as calcite, that occur everywhere. The geological context (shallow level diabase intrusions), the crystallization of the pyrometamorphic minerals spurrite and olivine, and comparison with diagrams from the literature allow estimating temperatures and pressures around 1050-1200 °C and 0.5-1.0 kbar, respectively, for PTOTAL=PCO2. The post-intrusion cooling would have afforded the releasing of metasomatic / hydrothermal fluids, allowing the opening of the metamorphic system, with possible contribution of chemical elements from host units (sandstones, shales) and from basic intrusions. This would induce hydration of previous phases, allowing the formation of serpentine, chlorite and brucite. The results discussed here reveal the strong influence of the heat from basic intrusions within the sedimentary pile. Whereas in the offshore portion of the basin occur sills with up to 1000 m thickness, the understanding of pyrometamorphism might be useful for understanding and measuring the thermally affected rocks.
Resumo:
The objective of this study was to characterize the structural-geophysical expression of the Transbrasiliano Lineament (TBL) in the east-central portion of the Parnaíba Basin. The TBL corresponds to a major Neoproterozoic NE-trending shear zone related to the Brasiliano orogenic cycle, with dextral strike-slip kinematics, underlying (but also laterally exposed in the NE and SW basin edges) the sedimentary section of the Parnaíba Basin. In this study, the interpretation of gravity and magnetic anomaly maps is consistent with the TBL kinematics, the signature of the geophysical anomalies corresponding to the high (plastic behaviour) and subsequent declining temperature (ductile to brittle behaviour) stages during Brasiliano and late Brasiliano times. The pattern of residual gravity anomalies is compatible with an S-C dextral pair shaping the geological bodies of an heterogeneous basement, such as slices of gneisses and granulites (positive anomalies), granitic and low-medium grade metasedimentary rocks (negative anomalies). Such anomalies curvilinear trends, ranging from NNE (interpreted as S surfaces) to NE (C surfaces), correspond to flattening surfaces (S), while the NE rectilinear trend must represent a C band. The narrower magnetic anomalies also display NNE to NE (S surfaces) trends and should correspond to similar (although narrower and more discontinuous) sources in the equivalent anomaly patterns. Pre-Silurian pull-apart style grabens may contribute to the NE negative gravimetric anomalies, although this interpretation demands control by seismic data analysis. On the other hand, the curvilinear anomalies associated to contractional trends are incompatible with their interpretation as pre-Silurian graben, in both maps. In the (reduced to the pole) magnetic anomalies map, most of these are again associated to low-temperature shear zones (C planes) and faults, juxtaposing distinct blocks in terms of magnetic properties, or eventually filled with basic bodies. It is also possible that some isolated magnetic anomalies correspond to igneous bodies of late-Brasiliano or Mesozoic age. The basement late discontinuities pattern can be interpreted in analogy to the Riedel fractures model, with steep dipping surfaces and a sub-horizontal movement section. This study also explored 2D gravity modeling controlled by the interpretation of a dip seismic line as regards to the Transbrasiliano Lineament. The rock section equivalent to the Jaibaras Group occupying a graben structure (as identified in the seismic line) corresponds to a discrete negative anomaly superimposed to a gravimetric high, once again indicating a stronger influence of older crystalline basement rocks as gravimetric sources, mainly reflecting the heterogeneities and anisotropies generated at high temperature conditions and their subsequent cooling along the TBL, during the Brasiliano cycle.
Resumo:
The objective of this study was to characterize the structural-geophysical expression of the Transbrasiliano Lineament (TBL) in the east-central portion of the Parnaíba Basin. The TBL corresponds to a major Neoproterozoic NE-trending shear zone related to the Brasiliano orogenic cycle, with dextral strike-slip kinematics, underlying (but also laterally exposed in the NE and SW basin edges) the sedimentary section of the Parnaíba Basin. In this study, the interpretation of gravity and magnetic anomaly maps is consistent with the TBL kinematics, the signature of the geophysical anomalies corresponding to the high (plastic behaviour) and subsequent declining temperature (ductile to brittle behaviour) stages during Brasiliano and late Brasiliano times. The pattern of residual gravity anomalies is compatible with an S-C dextral pair shaping the geological bodies of an heterogeneous basement, such as slices of gneisses and granulites (positive anomalies), granitic and low-medium grade metasedimentary rocks (negative anomalies). Such anomalies curvilinear trends, ranging from NNE (interpreted as S surfaces) to NE (C surfaces), correspond to flattening surfaces (S), while the NE rectilinear trend must represent a C band. The narrower magnetic anomalies also display NNE to NE (S surfaces) trends and should correspond to similar (although narrower and more discontinuous) sources in the equivalent anomaly patterns. Pre-Silurian pull-apart style grabens may contribute to the NE negative gravimetric anomalies, although this interpretation demands control by seismic data analysis. On the other hand, the curvilinear anomalies associated to contractional trends are incompatible with their interpretation as pre-Silurian graben, in both maps. In the (reduced to the pole) magnetic anomalies map, most of these are again associated to low-temperature shear zones (C planes) and faults, juxtaposing distinct blocks in terms of magnetic properties, or eventually filled with basic bodies. It is also possible that some isolated magnetic anomalies correspond to igneous bodies of late-Brasiliano or Mesozoic age. The basement late discontinuities pattern can be interpreted in analogy to the Riedel fractures model, with steep dipping surfaces and a sub-horizontal movement section. This study also explored 2D gravity modeling controlled by the interpretation of a dip seismic line as regards to the Transbrasiliano Lineament. The rock section equivalent to the Jaibaras Group occupying a graben structure (as identified in the seismic line) corresponds to a discrete negative anomaly superimposed to a gravimetric high, once again indicating a stronger influence of older crystalline basement rocks as gravimetric sources, mainly reflecting the heterogeneities and anisotropies generated at high temperature conditions and their subsequent cooling along the TBL, during the Brasiliano cycle.
Resumo:
Recent endogenous processes provide dynamic movements in the lithosphere and generate the varied forms of relief, even in areas of passive continental margins, such as the research area of this work located in northeastern Brazil. The reactivation of Precambrian basement structures, after the breakup between South America and Africa in the Cretaceous played an important role in the evolution of basins, which provided generated forms of relief. These morphodynamic characteristics can be easily observed in marginal basins that exhibit strong evidence fault reactivations. The purpose of this study is to investigate the influence of morphotectonic processes in the landscape structuring of Paraíba Basin. Therefore, we used aeromagnetic, high–resolution images of the Shuttle Radar Topographic Mission–SRTM, structural geological data, deep well data and geological field data. Based on the results of the data was observed that some preexisting structures in the crystalline basement coincide with magnetic and topographic lineaments interpreted as fault reactivation of the Post–Miocene units in the Paraíba Basin. Faults that offset lithostratigraphic units provided evidence that tectonic activity associated with the deposition and erosion in the Paraíba Basin occurred from Cretaceous to the Quaternary. The neotectonic activity that occurred in Paraíba Basin was able to influence the deposition of sedimentary units and landforms. It indicates that the deposition of post–Cretaceous units was influenced by reactivation of Precambrian basement structures in this part of the Brazilian continental margin.