83 resultados para Carvão : Mineração


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soft skills and teamwork practices were identi ed as the main de ciencies of recent graduates in computer courses. This issue led to a realization of a qualitative research aimed at investigating the challenges faced by professors of those courses in conducting, monitoring and assessing collaborative software development projects. Di erent challenges were reported by teachers, including di culties in the assessment of students both in the collective and individual levels. In this context, a quantitative research was conducted with the aim to map soft skill of students to a set of indicators that can be extracted from software repositories using data mining techniques. These indicators are aimed at measuring soft skills, such as teamwork, leadership, problem solving and the pace of communication. Then, a peer assessment approach was applied in a collaborative software development course of the software engineering major at the Federal University of Rio Grande do Norte (UFRN). This research presents a correlation study between the students' soft skills scores and indicators based on mining software repositories. This study contributes: (i) in the presentation of professors' perception of the di culties and opportunities for improving management and monitoring practices in collaborative software development projects; (ii) in investigating relationships between soft skills and activities performed by students using software repositories; (iii) in encouraging the development of soft skills and the use of software repositories among software engineering students; (iv) in contributing to the state of the art of three important areas of software engineering, namely software engineering education, educational data mining and human aspects of software engineering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soft skills and teamwork practices were identi ed as the main de ciencies of recent graduates in computer courses. This issue led to a realization of a qualitative research aimed at investigating the challenges faced by professors of those courses in conducting, monitoring and assessing collaborative software development projects. Di erent challenges were reported by teachers, including di culties in the assessment of students both in the collective and individual levels. In this context, a quantitative research was conducted with the aim to map soft skill of students to a set of indicators that can be extracted from software repositories using data mining techniques. These indicators are aimed at measuring soft skills, such as teamwork, leadership, problem solving and the pace of communication. Then, a peer assessment approach was applied in a collaborative software development course of the software engineering major at the Federal University of Rio Grande do Norte (UFRN). This research presents a correlation study between the students' soft skills scores and indicators based on mining software repositories. This study contributes: (i) in the presentation of professors' perception of the di culties and opportunities for improving management and monitoring practices in collaborative software development projects; (ii) in investigating relationships between soft skills and activities performed by students using software repositories; (iii) in encouraging the development of soft skills and the use of software repositories among software engineering students; (iv) in contributing to the state of the art of three important areas of software engineering, namely software engineering education, educational data mining and human aspects of software engineering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Given the environmental concern over global warming that occurs mainly by emission of CO2 from the combustion of petroleum, coal and natural gas research focused on alternative and clean energy generation has been intensified. Among these, the highlight the solid oxide fuel cell intermediate temperature (IT-SOFC). For application as electrolyte of the devices doped based CeO2 with rare earth ions (TR+ 3) have been quite promising because they have good ionic conductivity and operate at relatively low temperatures (500-800 ° C). In this work, studied the Ce1-xEuxO2-δ (x = 0,1, 0,2 and 0,3), solid solutions synthesized by the polymeric precursor method to be used as solid electrolyte. It was also studied the processing steps of these powders (milling, compaction and two step sintering) in order to obtain dense sintered pellets with reduced grain size and homogeneous microstructure. For this, the powders were characterized by thermal analysis, X-ray diffraction, particle size distribution and scanning electrons microscopy, since the sintered samples were characterized by dilatometry, scanning electrons microscopy, density and grain size measurements. By x-ray diffraction, it was verified the formation of the solid solution for all compositions. Crystallites in the nanometric scale were found for both sintering routes but the two step sintering presented significant reduction in the average grain size

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mining industry is responsible for the generation of waste from their natural process of extraction. The mining impacts in urban areas are of special importance due to the high urban occupation, which are exacerbated due to the proximity of the mined areas and populated areas. Some solutions to wastedisposal have the potential to significantly reduce the environmental risks and liabilities, but represent higher costs in the stages of deployment and operation. The addition of mining waste as raw material in the development of commercial products reduces the environmental impacts, transforming the waste into a positive element in the generation of employment and income. This thesis studies the incorporation of waste iron ore in two clays, one from the ceramic industry of the City of Natal and the other from the ceramic industry of the Seridó Region, both in the State of Rio Grande do Norte, Brazil. Percentages of iron ore waste of 5%, 10% , 15%, 20%, 25% and 30% were used in the tested ceramic matrix. The two clays and the iron ore waste used as part of this investigation were characterized by X-ray diffraction tests, X-ray fluorescence tests, differential thermal analysis, thermogravimetric analysis and dilatometric analysis. The samples were sintered under temperatures of 850 °C, 950 °C and 1050°C at a heating rate of 5 °C/min with isotherms of two hours. The following tests were performed with the samples: linear shrinkage, water absorption, apparent porosity, apparent density, mass loss in fire and bending resistance in order to obtain their physical and mechanical properties. An amount of 5% of waste iron ore in the matrix clay at a temperature of 850 0C resulted in na increase of about 65% in the tensile strength of the clay samples from the Natal ceramic industry. A linear shrinkage of only 0.12% was observed for the samples, which indicates that the physical properties of the final product were not influenced by the addition of the waste

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O processamento térmico de materiais cerâmicos via energia de microondas, no estágio atual, vem ganhando cada dia mais importância, tendo em vista suas inúmeras aplicações, como por exemplo: aplicação de microondas na área de processamento mineral (aquecimento de minérios antes da moagem, secagem, redução carbotérmica de óxidos minerais, lixiviação, fusão, pré-tratamento de minérios e concentrados de ouro refratário, regeneração de carvão, etc. de acordo com Kigman & Rowson, 1998). Em virtude de uma série de vantagens em potencial, frente aos métodos convencionais de aquecimento, como redução no tempo de processamento; economia de energia; diminuição do diâmetro médio das partículas e melhoramento nas propriedades tecnológicas em geral, esta tecnologia vem se destacando. Neste contexto, o objetivo geral deste trabalho, é desenvolver uma pesquisa visando identificar e caracterizar novas opções de matérias-primas cerâmicas como argilas, feldspatos e caulins que sejam eficazes para definir a formulação de uma ou mais massas para produção de componentes de cerâmica estrutural com propriedades físicas, mecânicas e estéticas adequadas após passarem por sinterização convencional e por energia de microondas destacando as vantagens desta última. Além dos requisitos técnicos e de processo, as formulações apresentadas deverão atender às expectativas de preço e de logística de fornecimento. No estudo foram conformados corpos-de-prova por extrusão e prensagem, sinterizados em fornos microondas e convencional, sob ciclos de queima mais rápidos que os atualmente praticados. As matérias-primas foram caracterizadas e analisadas, utilizando as técnicas de fluorescência por raios X (FRX), difração por raios X (DRX), análise térmica diferencial (DTA), análise térmica gravimétrica (DTG), análise granulométrica (AG), microscopia eletrônica de varredura (MEV), absorção d agua (AA), massa especifica aparente (MEA), porosidade aparente (PA), retração linear (RL) e tensão de ruptura e flexão (TRF). Os resultados obtidos indicaram que as propriedades tecnológicas de Absorção de água (AA) e Tensão de Ruptura e flexão (TRF), proposto no trabalho foram adquiridos com sucesso e estão bem além do limite exigido pelas especificações das normas da ABNT NBR 15.270/05 e 15.310/09

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This master thesis aims at developing a new methodology for thermochemical degradation of dry coconut fiber (dp = 0.25mm) using laboratory rotating cylinder reactor with the goal of producing bio-oil. The biomass was characterized by infrared spectroscopy with Fourier transform FTIR, thermogravimetric analysis TG, with evaluation of activation energy the in non-isothermal regime with heating rates of 5 and 10 °C/min, differential themogravimetric analysis DTG, sweeping electron microscopy SEM, higher heating value - HHV, immediate analysis such as evaluated all the amounts of its main constituents, i.e., lignin, cellulose and hemicelluloses. In the process, it was evaluated: reaction temperature (450, 500 and 550oC), carrier gas flow rate (50 and 100 cm³/min) and spin speed (20 and 25 Hz) to condensate the bio-oil. The feed rate of biomass (540 g/h), the rotation of the rotating cylinder (33.7 rpm) and reaction time (30 33 min) were constant. The phases obtained from the process of pyrolysis of dry coconut fiber were bio-oil, char and the gas phase non-condensed. A macroscopic mass balance was applied based on the weight of each phase to evaluate their yield. The highest yield of 20% was obtained from the following conditions: temperature of 500oC, inert gas flow of 100 cm³/min and spin speed of 20 Hz. In that condition, the yield in char was 24.3%, non-condensable gas phase was 37.6% and losses of approximately 22.6%. The following physicochemical properties: density, viscosity, pH, higher heating value, char content, FTIR and CHN analysis were evaluated. The sample obtained in the best operational condition was subjected to a qualitative chromatographic analysis aiming to know the constituents of the produced bio-oil, which were: phenol followed by sirigol, acetovanilona and vinyl guaiacol. The solid phase (char) was characterized through an immediate analysis (evaluation of moisture, volatiles, ashes and fixed carbon), higher heating value and FTIR. The non-condensing gas phase presented as main constituents CO2, CO and H2. The results were compared to the ones mentioned by the literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The demand for alternative sources of energy drives the technological development so that many fuels and energy conversion processes before judged as inadequate or even non-viable, are now competing fuels and so-called traditional processes. Thus, biomass plays an important role and is considered one of the sources of renewable energy most important of our planet. Biomass accounts for 29.2% of all renewable energy sources. The share of biomass energy from Brazil in the OIE is 13.6%, well above the world average of participation. Various types of pyrolysis processes have been studied in recent years, highlighting the process of fast pyrolysis of biomass to obtain bio-oil. The continuous fast pyrolysis, the most investigated and improved are the fluidized bed and ablative, but is being studied and developed other types in order to obtain Bio-oil a better quality, higher productivity, lower energy consumption, increased stability and process reliability and lower production cost. The stability of the product bio-oil is fundamental to designing consumer devices such as burners, engines and turbines. This study was motivated to produce Bio-oil, through the conversion of plant biomass or the use of its industrial and agricultural waste, presenting an alternative proposal for thermochemical pyrolysis process, taking advantage of particle dynamics in the rotating bed that favors the right gas-solid contact and heat transfer and mass. The pyrolyser designed to operate in a continuous process, a feeder containing two stages, a divisive system of biomass integrated with a tab of coal fines and a system of condensing steam pyrolytic. The prototype has been tested with sawdust, using a complete experimental design on two levels to investigate the sensitivity of factors: the process temperature, gas flow drag and spin speed compared to the mass yield of bio-oil. The best result was obtained in the condition of 570 oC, 25 Hz and 200 cm3/min, temperature being the parameter of greatest significance. The mass balance of the elementary stages presented in the order of 20% and 37% liquid pyrolytic carbon. We determined the properties of liquid and solid products of pyrolysis as density, viscosity, pH, PCI, and the composition characterized by chemical analysis, revealing the composition and properties of a Bio-oil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fast pyrolysis of lignocellulosic biomass is a thermochemical conversion process for production energy which have been very atratactive due to energetic use of its products: gas (CO, CO2, H2, CH4, etc.), liquid (bio-oil) and charcoal. The bio-oil is the main product of fast pyrolysis, and its final composition and characteristics is intrinsically related to quality of biomass (ash disposal, moisture, content of cellulose, hemicellulose and lignin) and efficiency removal of oxygen compounds that cause undesirable features such as increased viscosity, instability, corrosiveness and low calorific value. The oxygenates are originated in the conventional process of biomass pyrolysis, where the use of solid catalysts allows minimization of these products by improving the bio-oil quality. The present study aims to evaluate the products of catalytic pyrolysis of elephant grass (Pennisetum purpureum Schum) using solid catalysts as tungsten oxides, supported or not in mesoporous materials like MCM-41, derived silica from rice husk ash, aimed to reduce oxygenates produced in pyrolysis. The biomasss treatment by washing with heated water (CEL) or washing with acid solution (CELix) and application of tungsten catalysts on vapors from the pyrolysis process was designed to improve the pyrolysis products quality. Conventional and catalytic pyrolysis of biomass was performed in a micro-pyrolyzer, Py-5200, coupled to GC/MS. The synthesized catalysts were characterized by X ray diffraction, infrared spectroscopy, X ray fluorescence, temperature programmed reduction and thermogravimetric analysis. Kinetic studies applying the Flynn and Wall model were performed in order to evaluate the apparent activation energy of holoceluloce thermal decomposition on samples elephant grass (CE, CEL and CELix). The results show the effectiveness of the treatment process, reducing the ash content, and were also observed decrease in the apparent activation energy of these samples. The catalytic pyrolysis process converted most of the oxygenate componds in aromatics such as benzene, toluene, ethylbenzene, etc