81 resultados para Cálcio dietético


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation describes the igneous suites of the Japi granitoid pluton, intrusive in the Paleoproterozoic gneiss-migmatite complex of the eastern domain of the Seridó Belt, northeastern Brazil. Field relations show that the pluton is affected by strong deformation associated to the Brasiliano orogeny (known as the D3 phase) , with a NW-trending extensionalleft-hand senestral shear zone (the Japi Shear Zone, JSZ) bordering the intrusive body to the west. Four plutonic suites are found in the main pluton and as satellyte intrusions, besides Iate pegmatite and pink leucogranites. An alkaline granitoid suite, dominated by syenogranites bearing sodic augite (and subordinate hornblende), define a main elliptical intrusion. In its northern part, this intrusion is made up by concentric sheets, contrasting with a smaller rounded stock to the south. These granites display a pervasive solid-state S>L fabric developed under high T conditions, characterized by plastic deformation of quartz and feldspar. It is especially, developed along the border of the pluton, with inward dips. A regular magmatic layering is present sometimes, parallel to the tectonic foliation. The syntectonic emplacement as regards to the Brasiliano (D3) event is indicated by the common occurrence of dykes and sheets along transtensional or extensional sites of the major structure. Field relations attest to the early emplacement of the alkaline granites as regards to the other suites. A basic-to-intermediate suite occurs as a western satellyte body and occupying the southern tail of the main alkaline pluton. It comprises a wide variety of compositional terms, including primitive gabbros and gabbro-norites, differentiated to monzonitic intermediate facies containing amphibole and biotite as their main mafic phases. These rocks display transitional high-K calc-alkaline to shoshonitic affinities. Porphyritic monzogranite suítes commonly occur as dykes and minor intrusives, isolated or associated with the basic-tointermediate rocks. In the latter case, magma mingling and mixing features attest that these are contemporaneous igneous suites. These granites show K-feldspar phenocrysts and a hornblende+biotite+titanite assemblage, displaying subalkaline/monzonitic geochemical affinities. Both suites exhibit SL magmatic fabrics overprinting or transitional to solid-state D3 deformation related to the JSI. Chemical data clearly show that they are related to different parental magmas. Finally, a microgranite suite occurs along a few topographic ridges paralell to the JSI. It comprises dominantly granodiorites with a mineralogy similar to the one of the porphyritic granitoids. However, discriminant diagrams show their distinct calc-alkaline affinity. The granodiorites display an essencially magmatic fabric, even though an incipient D3 solid-state structure may be developed along the JSI. Intrusion relationships with the previous suites, as well as regards to the D3 structures, point to their Iate emplacement. All these suites are intrusive in a Paleoproterozoic, high-grade gneiss-migmatite complex affected by two previous deformation phases (D1, D2). The fabrics associated with these earlier events are folded and overprinted by the younger D3 structures along the JSZ. The younger deformation is characterized by NE-dipping foliations and N/NE-plunging stretching lineations. In the JSZ northern termination the foliation acquires an ENE orientation, containing a stretching lineation plunging to the south. Symmetric kinematic cri teria developed at this site confirms the transpressional termination of the JSZ, as also shown by orthorrombic quartz c-axis patterns. E-W-trending d extra I shear zones developed in the central part of the JSZ are interpreted as antithetic structures associated to the transtensional deformation along the JSZ. This is consistent with its extensional-transcurrent kinematics and a flat-and-ramp geometry at depth, as shown by gravimetric data. The lateral displacement of the negative residual Bouguer anomalies, as regards to the main outcropping alkaline pluton, may be modelized by other deeper-seated granite bodies. Based on numerical modelling it was possible to infer two distinct intrusion styles for the alkaline pluton. The calculated model values are consistent with an emplacement by sheeting for the northern body, as already suggested by satellyte imagery and field mapping. On the other hand, the results point to a transition towards a diapir-related style associated to the smaller. southern stock. This difference in intrusion styles may relate to intensity variations and transtensional sites of the shear deformation along the JSZ. Trace element and Sr and Nd isotopes of the alkaline granites are compatible with their derivation trom a more basic crustal source, as compared to the presently outcropping highgrade gneisses, with participation (or alternatively dominated by) of an enriched lithospheric mantle component. Like other igneous suites in the Seridó Belt, the high LlL contents and fractionated REE patterns of the basic rocks also point to an enriched mantle as the source for this kind of magmatism. Geochemical and isotope data are compatible with a lower crustal origin for the porphyritic granites. On the basis of the strong control of the JSZ on the emplacement of lower crustal (porphyritic and alkaline granites) or lithospheric mantle (basic rocks, alkaline granites or a component of them) magmas, one may infer a deep root for this structure, bearing an important role in magma extraction, transport and emplacement in the Japi region, eastern domain of the Seridó Belt

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study area is located at the eastern-central portion of the Seridó Belt, on the interface between the Seridó Group Metasediments and the crystalline basement rocks of the Caicó Complex (RN). Petrographic and geochemical data allow us to define aspects related to the genesis and evolution of the Serra Verde Pluton magmas, which composes the goal of this dissertation The Serra Verde Pluton is a stock with outcropping area of about 25 km², which is intrusive into metasedimentary sequence and the basement gneisses. The pluton intrusion is sintectonic to the Brasiliano event, elongated along the NE direction, developing a cornue geometry. The rock is a monzogranite mainly composed by K-feldspar, plagioclase and quartz, which usually compose more than 85% of the modal analisys. The main mafic mineral is the biotite, while amphibole, sphene, epidote, opaque minerals, allanite, zircon and apatite occur as accessory minerals. It features still a latemagmatic paragenesis composed by chlorite, granular epidote, carbonates and muscovite, developed through the percolation of late CO2 and H2O rich fluids. Chemically, the Serra Verde Pluton rocks may be classified as metaluminous, of calc-alkaline affiliation, sometimes showing trondhjemític characteristics, with high Na2O (>4,5%), Sr (>400ppm) and Ba (>800ppm) and low K2O (≤3,0%), MgO (<1,0%), TiO2 (<0,5%), Rb (<90ppm), Y (≤16ppm) and Zr (≤13ppm). Micropetrographic evidences (mineral assembly and microtextures) indicate that the magma evolution occurred in moderated to high fO2 conditions, above the FMQ buffer. Thermo-barometric data obtained by minor elements geochemistry and the CIPW data, suggest a final/minimal pressure crystallization for the Serra Verde Pluton samples of about 3 to 5 kbar, liquidus temperature around 800o C, solidus temperature between 680o and 660o C. This data is compatible with those observed by many authors for the Neoproterozoic granites of the Seridó Belt. The group of analyzed data (Petrographic, microtextural and geochemical), suggests that the dominant process of the generation and evolution of the Serra Verde Granite magma was the fractional crystallization, probably from basement quartz-dioritic and tonalitic orthogneisses source

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study had to aimed to characterize the sediments of shallow continental shelf and realize the mapping of features visible for satellite images by using remote sensing techniques, digital image processing and analysis of bathymetry between Maxaranguape and Touros - RN. The study s area is located in the continental shallow shelf of Rio Grande do Norte, Brazil, and is part of the Environmental Protection Area (APA) of Coral Reefs. A total of 1186 sediment samples were collected using a dredge type van veen and positioning of the vessel was made out with the aid of a Garmin 520s. The samples were treated In the laboratory to analyze particle size of the sediment, concentration of calcium carbonate and biogenic composition. The digital images from the Landsat-5 TM were used to mapping of features. This stage was used the band 1 (0,45-1,52 μm) where the image were georeferenced, and then adjusting the histogram, giving a better view of feature bottom and contacts between different types of bottom. The results obtained from analysis of the sediment showed that the sediments of the continental shelf east of RN have a dominance of carbonate facies and a sand-gravelly bottom because the region is dominated by biogenic sediments, that are made mainly of calcareous algae. The bedform types identified and morphological features found were validated by bathymetric data and sediment samples examined. From the results obtained a division for the shelf under study is suggested, these regions being subdivided, in well characterized: (1) Turbid Zone, (2) Coral Patch Reefs Zone, (3) Mixed Sediments Carbonates Zone, ( 4) Algae Fouling Zone, (5) Alignment Rocky Zone, (6) Sand Waves Field (7) Deposit siliciclastic sands

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Beachrocks são rochas sedimentares formadas pela cimentação de sedimentos praiais por carbonato de cálcio em especial, calcita e/ou aragonita em zona de estirâncio. A ocorrência dessas rochas é bastante comum em diversas partes do globo, sobretudo em regiões com latitudes inferiores a 40º. O Rio Grande do Norte possui grande quantidade de beachrocks, os quais afloram tanto em regiões costeiras quanto em zona costa-afora. Os depósitos de beachrocks de zona costeira do referido estado têm sido estudados por diversos autores, os quais abordaram os mais variados temas desde o início do século XX. Por outro lado, os depósitos de zona costa-afora apesar de terem sido estudados por poucos autores têm ganhado atenção apenas nos últimos anos. Porém, nenhum trabalho até o presente fez algum tipo de estudo comparativo de cunho geológico entre os corpos de beachrocks presentes em ambas as zonas: costeira e costa-afora. Sendo assim, a presente dissertação teve o intuito de correlacionar os corpos de beachrocks que afloram em zona costeira aos que estão atualmente dispostos em zona costa-afora, próximo a isóbata de 25 m, levando em consideração seus aspectos petrográficos, diagenéticos e sedimentológicos. Para isso, foram percorridos cerca de 260 km de litoral, correspondendo ao trecho entre os municípios de Extremoz e Tibau, em busca de afloramentos de beachrocks. Seções colunares foram confeccionadas e amostras coletadas em estações de amostragem representativas da zona costeira, ao passo que da zona costa-afora apenas seções delgadas foram analisadas. Trabalhos disponíveis na literatura sobre o tema e área em pauta também foram utilizados. A partir dos dados levantados, observou-se que os beachrocks são formados por diferentes camadas ao longo de um perfil vertical. Estas camadas são claramente identificadas em afloramento pela diferença existente na composição, textura e estruturas sedimentares peculiares a cada uma delas. Seções delgadas foram confeccionadas e analisadas a partir de amostras coletadas nas diferentes camadas de diversos afloramentos. Um afloramento foi escolhido como afloramento modelo sendo este o de São Bento do Norte por apresentar a maior espessura de rocha aflorante (1,9 m). Este tem sido muito bem estudado tanto no corrente trabalho quanto em trabalhos de outros autores. A este foram comparados todos os outros afloramentos analisados. A partir da análise micropetrográfica, foram identificadas 03 microfácies para os beachrocks do Rio Grande do Norte, sendo elas: Quartzarenítica (< 2,9% de bioclastos), Quartzarenítica Bioclástica (entre 3 e 9,9% de bioclastos) e Bio-quartzarenítica (> 10% de bioclastos). Associando essas microfácies às análises sedimentológicas realizadas foi possível propor que as microfácies Quartzarenítica e Bio-quartzarenítica foram depositadas em zona de estirâncio enquanto que a microfácies Quartzarenítica Bioclástica foi depositada em zona de face litorânea superior. A história diagenética dos beachrocks estudados é marcada por quatro principais processos: compactação mecânica, cimentação, dissolução e geração de porosidade secundária, e oxidação. Dentre esses, o processo de cimentação é o mais importante, sendo caracterizado por precipitação de cimento de calcita rica em Mg sob cinco morfologias, a saber: cutículas criptocristalinas, franjas prismáticas isópacas, calcita espática microcristalina, calcita espática equante e agregados pseudo-peloidais. Todas estas morfologias foram formadas durante o estágio de eodiagênese, nas zonas freática marinha ativa ou freática meteórica ativa, corroborando assim com a idéia de que beachrocks têm sua litificação completa a pequenas profundidades. Associando as análises microfaciológicas às diagenéticas foi possível sugerir que a sucessão vertical de camadas vista em alguns beachrocks costeiros representam registros de variações de mais alta frequência do nível do mar durante o Holoceno. A partir daí, baseando-se em informações obtidas através de curvas de variação do nível do mar relativo no Holoceno para o Rio Grande do Norte, disponíveis na literatura, e na correlação aqui realizada entre os beachrocks costeiro e aqueles de zona costa-afora, foi possível inferir que estes últimos representam uma antiga linha de costa formada a idades relativas superiores a 7.000 anos A.P

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The final stage of Brasiliano/Pan-African orogeny in the Borborema Province is marked by widespread plutonic magmatism. The Serra da Macambira Pluton is an example of such plutonism in Seridó Belt, northeastern Borborema Province, and it is here subject of geological, petrographic, textural, geochemical and petrogenetic studies. The pluton is located in the State of Rio Grande do Norte, intrusive into Paleoproterozoic orthogneisses of the Caicó Complex and Neoproterozoic metassupracrustal rocks of the Seridó Group. Based upon intrusion/inclusion field relationships, mineralogy and texture, the rocks are classified as follows: intermediate enclaves (quartz-bearing monzonite and biotite-bearing tonalite), porphyritic monzogranite, equigranular syenogranite to monzogranite, and late granite and pegmatite dykes. Porphyritic granites and quartz-bearing monzonites represent mingling formed by the injection of an intermediate magma into a granitic one, which had already started crystallization. Both rocks are slightly older than the equigranular granites. Quartz-bearing monzonite has K-feldspar, plagioclase, biotite, hornblende and few quartz, meanwhile biotite-bearing tonalite are rich in quartz, poor in K-feldspar and hornblende is absent. Porphyritic and equigranular granites display mainly biotite and rare hornblende, myrmekite and pertitic textures, and zoned plagioclase pointing out to the relevance of fractional crystallization during magma evolution. Such granites have Rare Earth Elements (REE) pattern with negative Eu anomaly and light REE enrichment when compared to heavy REE. They are slight metaluminous to slight peraluminous, following a high-K calc-alkaline path. Petrogenesis started with 27,5% partial melting of Paleoproterozoic continental crust, generating an acid hydrous liquid, leaving a granulitic residue with orthopyroxene, plagioclase (An40-50), K-feldspar, quartz, epidote, magnetite, ilmenite, apatite and zircon. The liquid evolved mainly by fractional crystallization (10-25%) of plagioclase (An20), biotite and hornblende during the first stages of magmatic evolution. Granitic dykes are hololeucocratic with granophyric texture, indicating hypabissal crystallization and REE patterns similar to A-Type granites. Preserved igneous textures, absence or weak imprint of ductile tectonics, association with mafic to intermediate enclaves and alignment of samples according to monzonitic (high-K calcalkaline) series all indicate post-collisional to post-orogenic complexes as described in the literature. Such interpretation is supported by trace element discrimination diagrams that place the Serra da Macambira pluton as late-orogenic, probably reflecting the vanishing stages of the exhumation and collapse of the Brasiliano/Pan-African orogen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The of Serrinha plutonic suite, northeastern portion of the Borborema Province (NE Brazil), is characterized by a voluminous and diversified magmatism of Neoproterozoic age, intrusive in the Archean to Paleoproterozoic gneissic-migmatitic basement of the São José de Campestre massif. Field relations and petrographic and geochemical data allowed us to individualize different lithologic types among this plutonic suite, which is represented by intermediate to mafic enclaves, porphyritic diorites, porphyritic granitoids, porphyritic granodiorites, microporphyritic granites and dykes/sheets of microgranite. The intermediate-to-mafic enclaves occur associated with porphyritic granitoids, showing mixture textures. The porphyrytic diorites occur as isolated bodies, generally associated with intermediate-to-mafic enclaves and locally as enclaves within porphyritic granites. The granodiorites represent mixing between an intermediate to mafic magma with an acidic one. The micropophyritic granites occur as isolated small bodies, generally deformed, while the microgranite dykes/sheets crosscut all the previous granitoids. A U-Pb zircon age of 576 + 3 Ma was obtained for the Serrinha granite. This age is interpreted as age of the peak of the regional ductile deformational event (D3) and of the associated the E-W Rio Jacu shear zone, which control the emplacement of the Neoproterozoic syntectonic plutons. The porphyrytic granitoids show monzogranitic composition, transitional between peraluminous and metaluminous types, typically of the high potassium subalkaline-calc-alkaline series. The intermediate-to-mafic enclaves present vary from quartz diorite to tonalite/granodiorite, with metaluminous, shoshonitic affinity. The diorites are generally quartz-monzodiorite in composition, with metaluminous, subalkaline affinity. They display coarse-grained, inequigranular, porphyrytic texture, with predominance of plagioclase phenocrystals immersed in a matrix composed of biotite and pyroxenes. The microporphyrytic granites are essentially monzogranites of fine- to medium-grained texture, whereas microgranite dikes/sheets varying from monzogranites to syenogranites, with fine to media texture, equigranular. The diversified magmatism occurring at a relatively small surface associated with shear zones, suggests lithospheric dimensions for such structures, with magma extractions from different depths within the lower crust and upper mantle. The geological, geochemical and geochronological characteristics of the Serrinha plutonic suite suggest a pos-collisional geodynamic context for the Neoproterozoic magmatism. Thermobarometric data show emplacement conditions in the range 5-6 kbar (AlTamphibole) and 730-740°C (plagioclase-amphibole) for the porphyrytic granitoids (Serrinha body) and the intermediate-to-mafic enclaves