149 resultados para Bombas mecánicas
Resumo:
This thesis has as objective presents a methodology to evaluate the behavior of the corrosion inhibitors sodium nitrite, sodium dichromate and sodium molybdate, as well as your mixture, the corrosion process for the built-in steel in the reinforced concrete, through different techniques electrochemical, as well as the mechanical properties of that concrete non conventional. The addition of the inhibitors was studied in the concrete in the proportions from 0.5 to 3.5 % regarding the cement mass, isolated or in the mixture, with concrete mixture proportions of 1.0:1.5:2.5 (cement, fine aggregate and coarse aggregate), superplasticizers 2.0 % and 0.40 water/cement ratio. In the modified concrete resistance rehearsals they were accomplished to the compression, consistence and the absorption of water, while to analyze the built-in steel in the concrete the rehearsals of polarization curves they were made. They were also execute, rehearsals of corrosion potential and polarization resistance with intention of diagnose the beginning of the corrosion of the armors inserted in body-of-proof submitted to an accelerated exhibition in immersion cycle and drying to the air. It was concluded, that among the studied inhibitors sodium nitrite , in the proportion of 2.0 % in relation to the mass of the cement, presented the best capacity of protection of the steel through all the studied techniques and that the methodology and the monitoring techniques used in this work, they were shown appropriate to evaluate the behavior and the efficiency of the inhibitors
Resumo:
Heating rate is one of the main variables that determine a fire cycle. In industrial processes that use high temperatures, greater fire great can reduce the cost of production and increase productivity. The use of faster and more efficient fire cycles has been little investigated by the structural ceramic industry in Brazil. However, one of the possibilities that aims at modernizing the sector is the use of roller kilns and the inclusion of natural gas as fuel. Thus, the purpose of this study is to investigate the effect of heating rate on the technological properties of structural ceramic products. Clay raw materials from the main ceramic industries in the state of Rio Grande do Norte were characterized. Some of the raw materials characterized were formulated to obtain the best physical and mechanical properties. Next, raw materials and formulations were selected to study the influence of heating rate on the final properties of the ceramic materials. The samples were shaped by pressing and extrusion and submitted to rates of 1 °C/min, 10 °C/min and 20 °C/min, with final temperatures of 850 °C, 950 °C and 1050 °C. Discontinuous cycles with rates of 10 °C/min or 15 °C/min up to 600 °C and a rate of 20 °C/min up to final temperature were also investigated. Technological properties were determined for all the samples and microstructural analysis was carried out under a number of fire conditions. Results indicate that faster and more efficient fire cycles than those currently in practice could be used, limiting only some clay doughs to certain fire conditions. The best results were obtained for the samples submitted to slow cycles up to 600 °C and fast fire sinterization up to 950 °C. This paper presents for the first time the use of a fast fire rate for raw materials and clay formulations and seeks to determine ideal dough and processing conditions for using shorter fire times, thus enabling the use of roller kilns and natural gas in structural ceramic industries
Resumo:
Rio Grande do Norte State stands out as one great producer of structural clay of the brazilian northeastern. The Valley Assu ceramic tiles production stands out obtained from ilitics ball clays that abound in the region under study. Ceramics formulation and the design of experiments with mixture approach, has been applied for researchers, come as an important aid to decrease the number of experiments necessary to the optimization. In this context, the objective of this work is to evaluate the effects of the formulation, temperature and heating rate in the physical-mechanical properties of the red ceramic body used for roofing tile fabrication of the Valley Assu, using design of mixture experiments. Four clays samples used in two ceramics industry of the region were use as raw material and characterized by X-ray diffraction, chemical composition, differential thermal analysis (DTA), thermogravimetric analysis (TGA), particle size distribution analysis and plasticity techniques. Afterwards, they were defined initial molded bodies and made specimens were then prepared by uniaxial pressing at 25 MPa before firing at 850, 950 and 1050 ºC in a laboratory furnace, with heating rate in the proportions of 5, 10 e 15 ºC/min. The following tecnologicals properties were evaluated: linear firing shrinkage, water absorption and flexural strength. Results show that the temperature 1050 ºC and heating rate of 5 ºC/min was the best condition, therefore presented significance in all physical-mechanical properties. The model was accepted as valid based of the production of three new formulations with fractions mass diferents of the initial molded bodies and heated with temperature at 1050 ºC and heating rate of 5 ºC/min. Considering the formulation, temperature and heating rate as variables of the equations, another model was suggested, where from the aplication of design of experiments with mixtures was possible to get a best formulation, whose experimental error is the minor in relation to the too much formulations
Resumo:
Ceramic composites produced with polymerics precursors have been studied for many years, due to the facility of obtaining a complex shape, at low temperature and reduces cost. The main objective of this work is to study the process of sintering of composites of ceramic base consisting of Al2O3 and silicates, reinforced for NbC, through the technique of processing AFCOP, as well as the influence of the addition of LZSA, ICZ and Al as materials infiltration in the physical and mechanical properties of the ceramic composite. Were produced ceramic matrix composites based SiCxOy e Al2O3 reinforced with NbC, by hidrosilylation reaction between D4Vi and D1107 mixtured with Al2O3 as inert filler, Nb and Al as reactive filler. The specimens produced were pyrolised at 1200, 1250 and 1400°C and infiltred with Al, ICZ and LZSA, respectively. Density, porosity, flexural mechanical strength and fracture surface by scanning electron microscopy were evaluated. The microstructure of the composites was investigated by X-ray diffraction to identify the presence of crystalline phases. The composites presented apparent porosity varying of 31 up to 49% and mechanical flexural strength of 14 up to 34 MPa. The infiltration process improviment of the densification and reduction of the porosity, as well as increased the values of mechanical flexural strength. The obtained phases had been identified as being Al3Nb, NbSi2, Nb5S3, Nb3Si and NbC. The samples that were submitted the infiltration process presented a layer next surface with reduced pores number in relation to the total volume
Resumo:
The production of heavy oil fields, typical in the Northeastern region, is commonly stimulated by steam injection. High bottom hole temperatures are responsible not only for the development of deleterious stresses of the cement sheath but also for cement strength retrogression. To overcome this unfavorable scenario, polymeric admixtures can be added to cement slurries to improve its fracture energy and silica flour to prevent strength retrogression. Therefore, the objective of the present study was to investigate the effect of the addition of different concentrations of polyurethane (5-25%) to cement slurries containing 40% BWOC silica flour. The resulting slurries were characterized using standard API (American Petroleum Institute) laboratory tests. In addition to them, the mechanical properties of the slurries, including elastic modulus and microhardness were also evaluated. The results revealed that density, free water and stability of the composite cement/silica/polyurethane slurries were within acceptable limits. The rheological behavior of the slurries, including plastic viscosity, yield strength and gel strength increased with the addition of 10% BWOC polyurethane. The presence of polyurethane reduced the fluid loss of the slurries as well as their elastic modulus. Composite slurries also depicted longer setting times due to the presence of the polymer. As expected, both the mechanical strength and microhardness of the slurries decreased with the addition of polyurethane. However, at high bottom hole temperatures, the strength of the slurries containing silica and polyurethane was far superior than that of plain cement slurries. In summary, the use of polyurethane combined with silica is an interesting solution to better adequate the mechanical behavior of cement slurries to heavy oil fields subjected to steam injection
Resumo:
Os poços HPHT atravessam zonas anormalmente pressurizadas e com altos gradientes de temperatura. Esses poços apresentam elevadas concentrações de tensões produzidas pelas operações de perfuração e fraturamento hidráulico, flutuações da pressão e temperatura, forças dinâmicas geradas durante a perfuração, formações inconsolidadas, entre outros aspectos, podendo resultar em falhas mecânicas na bainha de cimento. Tais falhas comprometem a estabilidade mecânica do poço e o isolamento das zonas produtoras de óleos e/ou gás. Para que operações corretivas não se façam necessárias, é preciso adequar as pastas às condições de cada poço. Sistemas de pastas de cimento para poços HPHT requerem um bom controle de suas propriedades termo-mecânicas. Visto que a temperaturas superiores a 110 oC (230 oF) o cimento, após alcançar um valor máximo de resistência, inicia um processo de perda de resistência (retrogressão). Para prevenir esse efeito substitui-se parcialmente o cimento Portland por sílica com objetivo de incrementar a reação pozolânica. Esta reação modifica a trajetória do processo natural de hidratação do cimento, o gel de silicato de cálcio hidratado (C-S-H) se converte em várias outras fases com maior resistência. Polímeros também são adicionados para proporcionar maior flexibilidade e agir como barreira à propagação de trincas desenvolvidas sob tensão. O presente trabalho teve como objetivo estudar o comportamento do sistema cimento/sílica/polímero quando submetido às condições de alta temperatura e alta pressão. Foram formuladas pastas de cimento puro, pastas contendo 40 % BWOC de sílica flour e pastas com diferentes concentrações de poliuretana (5 % a 25 %) e 40 % BWOC de sílica flour. O peso específico das pastas foi fixado em 1,87 g/cm3 (15,6 lb/gal). Os resultados demonstram que as resistências da pasta contendo 40% de sílica e das com adição de polímero foram muito superiores a da pasta de cimento puro, não ocorrendo o efeito da retrogressão. As pastas com polímero apresentaram um crescente aumento da tenacidade com o aumento da concentração da mesma, sendo assim capaz de suportar as tensões. Além de se manterem estáveis termicamente acima de 180 ºC. O sistema também apresentou excelentes resultados de filtrado, reologia, água livre, estabilidade e permeabilidade. Sendo assim, o mesmo mostrou ser aplicável a poços HPHT
Resumo:
Cementing operations may occur at various stages of the life cycle of an oil well since its construction until its definitive abandonment. There are some situations in which the interest zones are depleted or have low fracture pressure. In such cases, the adoption of lowdensity cement slurries is an efficient solution. To this end, there are basically three ways to reduce the density of cement slurries: using microspheres, water extending additives or foamed cement. The objective of this study is to formulate, to study and to characterize lowdensity foamed cement, using an air entrainment surfactant with vermiculite or diatomite as water extenders and stabilizers. The methodology consists on preparation and evaluation of the slurries under the American Petroleum Institute (API) and the Brazilian Association of Technical Standards (ABNT) guidelines. Based on calculated densities between 13 and 15 ppg (1.559 and 1.799 g/cm3), the slurries were prepared with fixed surfactant concentration, varying the concentrations of vermiculite and diatomite and were compared with the base slurries. The results of plastic viscosity, yield point and gel strength and the compressive strength for 24 h showed that the slurries presented suitable rheology and mechanical strength for cementing operations in oil wells, and had their densities reduced between 8.40 and 11.89 ppg (1.007 and 1.426 g/cm3). The conclusion is that is possible, under atmospheric conditions, to obtain light weighted foamed cement slurries with satisfactory rheological and mechanical properties by means of air entrainment and mineral additions with extenders and stabilizers effects. The slurries have great potential for cementing operations; applicability in deep wells, in low fracture gradient formations and in depleted zones and bring cost savings by reducing the cementing consumption
Resumo:
Although there are a wide variety of additives that act in fresh state, to adjust the properties of cement, there is also a search by additions that improve the tenacity of the cement in the hardened state. This, in turn, can often be increased by inserting fibers, which act on the deflection of microcracks. This study aimed to use a microfiber glass wool (silica-based) as an additive reinforcing the cement matrix, improving the rupture tenacity, in order to prevent the propagation of microcracks in the cement sheath commonly found in oil wells submitted to high temperatures. The fibers were added at different concentrations, 2 to 5% (BWOC) and varied average sizes, grinding for 90 s, 180 s, 300 s, 600 s. The cement slurries were made with a density of 1,90 g/ cm3 (15,6 lb/gal), using Portland cement CPP- Special Class as the hydraulic binder and 40% silica flour. The characterization of the fiber was made by scanning electron microscopy (SEM), particle size by sieving, X-ray fluorescence (XRF), X-ray diffraction (XRD) and thermogravimetry (TG / DTG). Were performed technological tests set by the API (American Petroleum Institute) by rheology, stability, free water, compressive strength, as well as testing rupture energy, elastic modulus and permeability. The characterization results showed good thermal stability of the microfiber glass wool for application in oil wells submitted to steam injection and, also, that from the particle size data, it was possible to suggest that microfibers milled up to 300 s, are ideal to act as reinforcement to the cement slurries. The rheological parameters, there was committal of plastic viscosity when larger lengths were inserted of microfiber (F90). The values obtained by free water and stability were presented according to API. The mechanical properties, the incorporation of microfiber to the cement slurries gave better rupture tenacity, as compared to reference cement slurries. The values of compressive strength, elastic modulus and permeability have been maintained with respect to the reference cement slurries. Thus, cement slurries reinforced with microfiber glass wool can ensure good application for cementing oil wells submitted to steam injection, which requires control of microcracks, due to the thermal gradients
Resumo:
Cementing operation is one of the most important stages in the oil well drilling processes and has main function to form hydraulic seal between the various permeable zones traversed by the well. However, several problems may occur with the cement sheath, either during primary cementing or during the well production period. Cements low resistance can cause fissures in the cement sheath and compromise the mechanical integrity of the annular, resulting in contamination of groundwater and producing zones. Several researches show that biomass ash, in particular, those generated by the sugarcane industry have pozzolanic activity and can be added in the composition of the cementing slurries in diverse applications, providing improvements in mechanical properties, revenue and cement durability. Due to the importance of a low cost additive that increases the mechanical properties in a well cementing operations, this study aimed to potentiate the use of sugarcane bagasse ash as pozzolanic material, evaluate the mechanisms of action of this one on cement pastes properties and apply this material in systems slurries aimed to cementing a well with 800 m depth and geothermal gradient of 1.7 °F/100 ft, as much primary cementing operations as squeeze. To do this, the ash beneficiation methods were realized through the processes of grinding, sifting and reburning (calcination) and then characterization by X-ray fluorescence, XRD, TG / DTG, specific surface area, particle size distribution by laser diffraction and mass specific. Moreover, the ash pozzolanic activity added to the cement at concentrations of 0%, 20% and 40% BWOC was evaluated by pozzolanic activity index with lime and with Portland cement. The evaluation of the pozzolanic activity by XRD, TG / DTG and compressive strength confirmed the ash reactivity and indicated that the addition of 20% in the composition of cement slurries produces improvement 34% in the mechanical properties of the slurry cured. Cement slurries properties evaluated by rheological measurements, fluid loss, free fluid, slurry sedimentation, thickening time and sonic strength (UCA) were satisfactory and showed the viability of using the sugarcane ash in cement slurries composition for well cementing
Resumo:
The petroleum production pipeline networks are inherently complex, usually decentralized systems. Strict operational constraints are applied in order to prevent serious problems like environmental disasters or production losses. This paper describes an intelligent system to support decisions in the operation of these networks, proposing a staggering for the pumps of transfer stations that compose them. The intelligent system is formed by blocks which interconnect to process the information and generate the suggestions to the operator. The main block of the system uses fuzzy logic to provide a control based on rules, which incorporate knowledge from experts. Tests performed in the simulation environment provided good results, indicating the applicability of the system in a real oil production environment. The use of the stagger proposed by the system allows a prioritization of the transfer in the network and a flow programming
Resumo:
Oil production and exploration techniques have evolved in the last decades in order to increase fluid flows and optimize how the required equipment are used. The base functioning of Electric Submersible Pumping (ESP) lift method is the use of an electric downhole motor to move a centrifugal pump and transport the fluids to the surface. The Electric Submersible Pumping is an option that has been gaining ground among the methods of Artificial Lift due to the ability to handle a large flow of liquid in onshore and offshore environments. The performance of a well equipped with ESP systems is intrinsically related to the centrifugal pump operation. It is the pump that has the function to turn the motor power into Head. In this present work, a computer model to analyze the three-dimensional flow in a centrifugal pump used in Electric Submersible Pumping has been developed. Through the commercial program, ANSYS® CFX®, initially using water as fluid flow, the geometry and simulation parameters have been defined in order to obtain an approximation of what occurs inside the channels of the impeller and diffuser pump in terms of flow. Three different geometry conditions were initially tested to determine which is most suitable to solving the problem. After choosing the most appropriate geometry, three mesh conditions were analyzed and the obtained values were compared to the experimental characteristic curve of Head provided by the manufacturer. The results have approached the experimental curve, the simulation time and the model convergence were satisfactory if it is considered that the studied problem involves numerical analysis. After the tests with water, oil was used in the simulations. The results were compared to a methodology used in the petroleum industry to correct viscosity. In general, for models with water and oil, the results with single-phase fluids were coherent with the experimental curves and, through three-dimensional computer models, they are a preliminary evaluation for the analysis of the two-phase flow inside the channels of centrifugal pump used in ESP systems
Resumo:
In the artificial lift method by Electrical Submersible Pump (ESP), the energy is transmitted for the well´s deep through a flat electric handle, where it is converted into mechanical energy through an engine of sub-surface, which is connected to a centrifugal pump. This transmits energy to the fluid under the pressure form, bringing it to the surface In this method the subsurface equipment is basically divided into: pump, seal and motor. The main function of the seal is the protect the motor, avoiding the motor´s oil be contaminated by oil production and the consequent burning of it. Over time, the seal will be wearing and initiates a contamination of motor oil, causing it to lose its insulating characteristics. This work presents a design of a magnetic sensor capable of detecting contamination of insulating oil used in the artificial lift method of oil-type Electrical Submersible Pump (ESP). The objective of this sensor is to generate alarm signal just the moment when the contamination in the isolated oil is present, enabling the implementation of a predictive maintenance. The prototype was designed to work in harsh conditions to reach a depth of 2000m and temperatures up to 150°C. It was used a simulator software to defined the mechanical and electromagnetic variables. Results of field experiments were performed to validate the prototype. The final results performed in an ESP system with a 62HP motor showed a good reliability and fast response of the prototype.
Resumo:
The Electrical Submersible Pumping is an artificial lift method for oil wells employed in onshore and offshore areas. The economic revenue of the petroleum production in a well depends on the oil flow and the availability of lifting equipment. The fewer the failures, the lower the revenue shortfall and costs to repair it. The frequency with which failures occur depends on the operating conditions to which the pumps are submitted. In high-productivity offshore wells monitoring is done by operators with engineering support 24h/day, which is not economically viable for the land areas. In this context, the automation of onshore wells has clear economic advantages. This work proposes a system capable of automatically control the operation of electrical submersible pumps, installed in oil wells, by an adjustment at the electric motor rotation based on signals provided by sensors installed on the surface and subsurface, keeping the pump operating within the recommended range, closest to the well s potential. Techniques are developed to estimate unmeasured variables, enabling the automation of wells that do not have all the required sensors. The automatic adjustment, according to an algorithm that runs on a programmable logic controller maintains the flow and submergence within acceptable parameters avoiding undesirable operating conditions, as the gas interference and high engine temperature, without need to resort to stopping the engine, which would reduce the its useful life. The control strategy described, based on modeling of physical phenomena and operational experience reported in literature, is materialized in terms of a fuzzy controller based on rules, and all generated information can be accompanied by a supervisory system
Resumo:
Physical therapy has suffered of a mechanistic influence, with the superspecialization and fragmentation of learning, which interfers directly in the professional s understanding of the body, besides affecting his therapeutic performance. Worried about this reality, this research analyzed perceptions of Physical therapy students from Universidade Federal do Rio Grande do Norte and Universidade Potiguar about the human body. This is a descriptive study where 167 students were evaluated through objective and subjective responses to questionnaires designited QUEB Questionnare of understanding body evaluation. Searching the complement of the datas the QUEB open-ended was created, which gives freedom to students to answer freely. This questionnnaire was applicated on a subgroup composed by 21 students of the Health Sociology subject of the Physical therapy course. The validation process of these questionnaires included strategies of a panel of experts and face validity. The theorical reference analyzed based on the studies which favor the rejoining of knowledge represented by transdisciplinary support. The analysis of the results were performed quantitativavely and qualitatively through categorization of the responses selectioning key-words and the most expressive discourses , besides using descritive statistics interpretation. According to the responses, the body thought only thought biologically, ignoring the understanding of man as a cultural and social construction, confirming the presence of the reductionist model, with overvalorization of early specialization, technical training and purely biological and mechanical considerations of the body and its mobility. Probably, the dialogic knowledge of the body human inside Physical Therapist s learning can promote a growth of health s concept and a true activeness of Physical therapy on it, being the body a link with social environment. So, through understanding of the body as a complex form, the physical therapy will be able to attend your patients considerating their biological characteristics, but so the religious, political, social and ethics. Finally, this reflection suggests a search for a less technical vision, which allows the professional to discern more than segments of the body and which will contribute to a wider understanding of the patient and his social context, leading to greater humanization of the body , improvement in services and consequently, in the quality of life of these patients
Resumo:
The main focus of this thesis is the formation of a mathematical teacher at a college institution. The general aim is to describe and to analyze the formation process of a mathematical teacher which is an undergraduate student in Mathematics at the Instituto de Educação Superior Presidente Kennedy IFESP, in Natal-RN. It is based on a qualitative ethnographic approach, and has its theoretical anchorage in the (auto)biographical narratives, the social representative theories, and the mathematical education. The number of participants in this investigation was 12 undergraduate students, which corresponds to 25% of the total number of students. The corpus utilized in our analysis included 48 (auto)biographical essays, 12 (auto)biographies (formation's memories), and 12 contextualization files, besides the research's diary. The sources were obtained from the whole program of studies, i.e. from November 2003 to December 2006. The analysis revealed that the reminiscences of the 12 students' academic trajectory influenced their professional formation, since their images of a mathematical teacher were intrinsically related to the one they had before. These representations were being either demolished or constructed in a network along the assertive image of their profession, changing afterwards the mathematical representation and the teaching way of this discipline. Our study also shows that the beginning of their teacher career was marked by mechanical practices influenced by their old teachers. The (trans)formation of themselves and their teaching practices happened in a smooth way as soon as they increased their knowledgements in Mathematics, and it reflected upon the way they learned mathematics. The writing of their (auto)biographies helped the set up of new knowledgements, leaving to a self-consciousness as well as a self-formation, and contributed for the construction of a new way to see and to live the profession. Therefore, a mathematical teacher, for the undergraduate students of the IFESP involved in this work, is made at the interface of the familiar, academic, and professional context, besides the reflexive writings about the formation path, the way of life and the relationships among them